

RL Anonymity (with Python)

An experimental effort to use reinforcement learning techniques for data anonymization.
The project repository is at RL anonymity (with Python) [https://github.com/pockerman/rl_anonymity_with_python].

Contents

	Conceptual overview

	Installation
	Run tests

	Generate documentation

	Examples
	Q-learning on a three columns dataset

	Q-learning algorithm on mock data set

	Semi-gradient SARSA algorithm on mock data set

	A2C algorithm on mock data set

	API
	epsilon_greedy_q_estimator

	a2c

	q_learning

	semi_gradient_sarsa

	column_type

	datasets_loaders

	dataset_wrapper

	exceptions

	optimizer_type

	pytorch_optimizer_builder

	loss_functions

	distortion_calculator

	numeric_distance_type

	numeric_distance_calculator

	pytorch_optimizer_config

	string_distance_calculator

	a2c_networks

	processes_manager

	epsilon_greedy_policy

	preprocess_utils

	actions

	action_space

	state

	discrete_state_environment

	tiled_environment

	time_step

	multiprocess_env

	replay_buffer

	trainer

	pytorch_trainer

	replay_buffer

	iteration_control

	function_wraps

	episode_info

	mixins

	reward_manager

	serial_hierarchy

Indices and tables

	Index

	Module Index

	Search Page

Conceptual overview

The term data anonymization refers to techiniques that can be applied on a given dataset, \(D\), such that it makes it difficult for a third party to identify or infer the existence
of specific individuals in \(D\). Anonymization techniques, typically result into some sort of distortion
of the original dataset. This means that in order to maintain some utility of the transformed dataset, the transofrmations
applied should be constrained in some sense. In the end, it can be argued, that data anonymization is an optimization problem
meaning striking the right balance between data utility and privacy.

Reinforcement learning is a learning framework based on accumulated experience. In this paradigm, an agent is learning by iteracting with an environment
without (to a large extent) any supervision. The following image describes, schematically, the reinforcement learning framework .

[image: _images/agent_environment_interface.png]

Reinforcement learning paradigm.

The agent chooses an action, \(A_t \in \mathbb{A}\), to perform out of predefined set of actions \(\mathbb{A}\). The chosen action is executed by the environment
instance and returns to the agent a reward signal, \(R_{t+1}\), as well as the new state, \(S_{t + 1}\), that the enviroment is in.
The overall goal of the agent is to maximize the expected total reward i.e.

\[max E\left[R\right]\]

The framework has successfully been used to many recent advances in control, robotics, games and elsewhere.

In this work we are intersted in applying reinforcment learning techniques, in order to train agents to optimally anonymize a given
data set. In particular, we want to consider the following two scenarios

	A tabular data set is to be publicly released

	A data set is behind a restrictive API that allows users to perform certain queries on the hidden data set.

For the first scenario, let’s assume that we have in our disposal two numbers \(DIST_{min}\) and \(DIST_{max}\). The former indicates
the minimum total data set distortion that it should be applied in order to satisfy some minimum safety criteria. The latter indicates
the maximum total data set distortion that it should be applied in order to satisfy some utility criteria. Note that the same idea can be
applied to enforce constraints on how much a column should be distorted. Furtheremore, let’s assume the most common transformations applied
for data anonymization

	Generalization

	Suppresion

	Permutation

	Pertubation

	Anatomization

We can conceive the above transformations as our action set \(\mathbb{A}\). We can now cast the data anonymity problem into a form
suitable for reinforcement learning. Specifically, our goal, and the agent’s goal in that matter, is to obtain a policy pi of transformations such that by following pi,
the data set total distortion will be into the interval \([DIST_{min}, DIST_{max}]\). This is done by choosing actions/transformations from \(\mathbb{A}\).
This is shown schematically in the figure below

[image: _images/general_concept.png]

Data anonymization using reinforcement learning.

Thus the environment is our case is an entity that encapsulates the original data set and controls the actions applied on it as well as the
reward signal \(R_{t+1}\) and the next state \(S_{t+1}\) to be presented to the agent.

Nevertheless, there are some caveats that we need to take into account. We summarize these below.

First, we need a reward policy. The way we assign rewards implicitly
specifies the degree of supervision we allow. For instance we could allow for a reward to be assigned every time a transformation is applied.
This strategy allows for faster learning but it leaves little room for the agent to come up with novel strategies. In contrast,
returning a reward at the end of the episode, although it increases the training time, it allows the agent to explore novel strategies.
Related to the reward assignement is also the follwing issue. We need to reward the agent in a way that it is convinced that it should
explore transformations. This is important as we don’t want to the agent to simply exploit around the zero distortion point.
The second thing we need to take into account is that the metric we use to measure the data set distortion plays an important role.
Thirdly, we need to hold into memory two copies of the data set. One copy that no distortion is applied and one copy that we distort somehow
during an episode. We need this setting so that we are able to compute the column distortions. Fourthly, we need to establish the episode
termination criteria i.e. when do we consider that an episode is complete. Finally, as we assume that a data set may contain strings, floating point
numbers as well as integers, then computed distortions are normalized. This is needed in order to avoid having large column distortions, e.g. consider a salary column being distorted,
and also being able to sum all the column distortions in a meanigful way.

Installation

The following packages are required:

	NumPy [https://numpy.org/]

	Sphinx [https://www.sphinx-doc.org/en/master/]

	Python Pandas [https://pandas.pydata.org/]

	PyTorch [https://pytorch.org/]

	Coverage.py [https://coverage.readthedocs.io/en/6.3.2/]

You can install there as usual with pip.

pip install -r requirements.txt

Installation of the package is done via setuptools

python setup.py

Run tests

The is a series of tests to verify the implementation. You can executed these by running the script execute_tests_with_coverage.sh.

Generate documentation

You will need Sphinx [https://www.sphinx-doc.org/en/master/] in order to generate the API documentation. Assuming that Sphinx is already installed
on your machine execute the following commands (see also Sphinx tutorial [https://www.sphinx-doc.org/en/master/tutorial/index.html]).

sphinx-quickstart docs
sphinx-build -b html docs/source/ docs/build/html

Examples

Some examples can be found below

	Q-learning on a three columns dataset
	Overview

	Q-learning

	Code

	Results

	References

	Q-learning algorithm on mock data set
	Overview

	Code

	Results

	References

	Semi-gradient SARSA algorithm on mock data set
	Overview

	Semi-gradient SARSA algorithm

	Tile coding

	Code

	References

	A2C algorithm on mock data set
	Overview

	A2C algorithm

	Estimate \(A(s_t, a_t)\)

	GAE

	A2C model

	Code

	Results

	References

Q-learning on a three columns dataset

Overview

In this example, we use a tabular Q-learning algorithm to anonymize a data set with three columns.
In particular, we discretize the total dataset distortion into bins. Another approach could be
to discretize the distortion of each column into bins and create tuples of indeces representing a state.
We follow the latter approach in another example.

Q-learning

Q-learning is one of the early breakthroughs in the field of reinforcement learning [1]. It was first introduced in [2].
Q-learning is an off-policy algorithm where the learned state-action value function \(Q(s, \alpha)\) directly approximates
the optimal state-action value function \(Q^*\). This is done independently of the policy \(\pi\) being followed [1].

The Q-learning algorithm is an iterative algorithm where we iterate over a number of episodes. At each episode
the algorithm steps over the environment for a user-specified number steps it executes an action which results
in a new state. This is shown collectively in the image below

[image: ../_images/q_learning.png]

Q-learning algorithm. Image from [1].

At each episode step, the algorithm updates \(Q(s, \alpha)\) according to:

\[Q(s_t, \alpha_t) = Q(s_t, \alpha_t) + \alpha \left[r_{t+1} + \gamma max_{\alpha} Q(s_{t+1}, \alpha) - Q(s_t, \alpha_t)\right]\]

where \(\alpha\) is a user-defined learning factor and \(\gamma\) is the user-defined discount factor. The algorithm requires the following user-defined input

	Number of episodes

	Number of steps per episode

	\(\gamma\)

	\(\alpha\)

	An external policy function to decide which action to take (e.g. \(\epsilon\)-greedy)

Although with Q-learning \(Q(s, \alpha)\) directly approximates \(Q^*\) independently of the policy \(\pi\) being followed,
the policy still has an effect in that it determines which state-action pairs and visited updated.
However, for correct convergence all that is required is that all pairs continue to be updated [1]. In fact, any method guaranteed to find optimal behavior in the general case must require it [1].

The algorithm above, stores the expected value estimate for each state-action pair in a table.
This means we cannot use it when we have continuous states or actions, which would lead to an array of infinite length.
Given that the total dataset distortion is assumed to be in the range \([0, 1]\) of the real numbers; where the edge points mean no distortion
and full distortion of the data set/column respectively. We discretize this range into bins and for each entailed value of the distortion we use the corresponding bin as a state index.
Alternatively, we could discretize the distortion of each column into bins and create tuples of indeces representing a state.

We preprocess the data set by normalizing the numeric columns.
We will use the cosine normalized distance to measure the distortion of columns with string data.
Similarly, we use the following \(L_2\)-based norm for calculating the distortion of
numeric columns

\[dist(\mathbf{v}_1, \mathbf{v}_2) = \sqrt{\frac{||\mathbf{v}_1 - \mathbf{v}_2||_{L_2}}{N}}\]

where N is the size of the vector. This way the resulting distance, due to the normalization of numeric columns, will be in the range \([0,1]\).

Code

The necessary imports

import numpy as np
import random

from src.trainers.trainer import Trainer, TrainerConfig
from src.algorithms.q_learning import QLearning, QLearnConfig
from src.spaces.action_space import ActionSpace
from src.spaces.actions import ActionIdentity, ActionStringGeneralize, ActionNumericBinGeneralize
from src.policies.epsilon_greedy_policy import EpsilonGreedyPolicy, EpsilonDecayOption
from src.utils.iteration_control import IterationControl
from src.examples.helpers.plot_utils import plot_running_avg
from src.datasets import ColumnType
from src.examples.helpers.load_three_columns_mock_dataset import load_discrete_env, \
 get_ethinicity_hierarchy, get_salary_bins, load_mock_subjects
from src.spaces.env_type import DiscreteEnvType
from src.utils import INFO

Next establish a set of configuration parameters

configuration params
EPS = 1.0
EPSILON_DECAY_OPTION = EpsilonDecayOption.CONSTANT_RATE # .INVERSE_STEP
EPSILON_DECAY_FACTOR = 0.01
GAMMA = 0.99
ALPHA = 0.1
N_EPISODES = 1001
N_ITRS_PER_EPISODE = 30
N_STATES = 10
fix the rewards. Assume that any average distortion in
(0.3, 0.7) suits us
MAX_DISTORTION = 0.7
MIN_DISTORTION = 0.3
OUT_OF_MAX_BOUND_REWARD = -1.0
OUT_OF_MIN_BOUND_REWARD = -1.0
IN_BOUNDS_REWARD = 5.0
OUTPUT_MSG_FREQUENCY = 100
N_ROUNDS_BELOW_MIN_DISTORTION = 10
SAVE_DISTORTED_SETS_DIR = "q_learning_three_columns_results/distorted_set"
PUNISH_FACTOR = 2.0

The dirver code brings all the elements together

if __name__ == '__main__':

 # set the seed for random engine
 random.seed(42)

 # set the seed for random engine
 random.seed(42)

 column_types = {"ethnicity": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "salary": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "diagnosis": ColumnType.INSENSITIVE_ATTRIBUTE}

 action_space = ActionSpace(n=5)
 # all the columns that are SENSITIVE_ATTRIBUTE will be kept as they are
 # because currently we have no model
 # also INSENSITIVE_ATTRIBUTE will be kept as is
 action_space.add_many(ActionIdentity(column_name="salary"),
 ActionIdentity(column_name="diagnosis"),
 ActionIdentity(column_name="ethnicity"),
 ActionStringGeneralize(column_name="ethnicity",
 generalization_table=get_ethinicity_hierarchy()),
 ActionNumericBinGeneralize(column_name="salary",
 generalization_table=get_salary_bins(ds=load_mock_subjects(),
 n_states=N_STATES)))

 env = load_discrete_env(env_type=DiscreteEnvType.TOTAL_DISTORTION_STATE, n_states=N_STATES,
 action_space=action_space,
 min_distortion=MIN_DISTORTION, max_distortion=MIN_DISTORTION,
 total_min_distortion=MIN_DISTORTION, total_max_distortion=MAX_DISTORTION,
 punish_factor=PUNISH_FACTOR, column_types=column_types,
 save_distoreted_sets_dir=SAVE_DISTORTED_SETS_DIR,
 use_identifying_column_dist_in_total_dist=False,
 use_identifying_column_dist_factor=-100,
 gamma=GAMMA,
 in_bounds_reward=IN_BOUNDS_REWARD,
 out_of_min_bound_reward=OUT_OF_MIN_BOUND_REWARD,
 out_of_max_bound_reward=OUT_OF_MAX_BOUND_REWARD,
 n_rounds_below_min_distortion=N_ROUNDS_BELOW_MIN_DISTORTION)

 # save the data before distortion so that we can
 # later load it on ARX
 env.save_current_dataset(episode_index=-1, save_index=False)

 # configuration for the Q-learner
 algo_config = QLearnConfig(gamma=GAMMA, alpha=ALPHA,
 n_itrs_per_episode=N_ITRS_PER_EPISODE,
 policy=EpsilonGreedyPolicy(eps=EPS, n_actions=env.n_actions,
 decay_op=EPSILON_DECAY_OPTION,
 epsilon_decay_factor=EPSILON_DECAY_FACTOR))

 agent = QLearning(algo_config=algo_config)

 trainer_config = TrainerConfig(n_episodes=N_EPISODES, output_msg_frequency=OUTPUT_MSG_FREQUENCY)
 trainer = Trainer(env=env, agent=agent, configuration=trainer_config)
 trainer.train()

 # avg_rewards = trainer.avg_rewards()
 avg_rewards = trainer.total_rewards
 plot_running_avg(avg_rewards, steps=100,
 xlabel="Episodes", ylabel="Reward",
 title="Running reward average over 100 episodes")

 avg_episode_dist = np.array(trainer.total_distortions)
 print("{0} Max/Min distortion {1}/{2}".format(INFO, np.max(avg_episode_dist), np.min(avg_episode_dist)))

 plot_running_avg(avg_episode_dist, steps=100,
 xlabel="Episodes", ylabel="Distortion",
 title="Running distortion average over 100 episodes")

 print("===")
 print("{0} Generating distorted dataset".format(INFO))
 # Let's play
 env.reset()

 stop_criterion = IterationControl(n_itrs=10, min_dist=MIN_DISTORTION, max_dist=MAX_DISTORTION)
 agent.play(env=env, stop_criterion=stop_criterion)
 env.save_current_dataset(episode_index=-2, save_index=False)
 print("{0} Done....".format(INFO))
 print("===")

Results

The following images show the performance of the learning process

[image: ../_images/qlearn_rewards_3_cols.png]

Running average reward.

[image: ../_images/qlearn_distortion_3_cols.png]

Running average total distortion.

Although there is evidence of learning, it should be noted that this depends heavily on the applied transformations on the columns and the
metrics used. So typically, some experimentation should be employed in order to determine the right options.

The following is snapshot of the distorted dataset produced by the agent

ethnicity,salary,diagnosis
British,0.3333333333333333,1
British,0.1111111111111111,0
British,0.5555555555555556,3
British,0.5555555555555556,3
British,0.1111111111111111,0
British,0.1111111111111111,1
British,0.1111111111111111,4
British,0.3333333333333333,3
British,0.1111111111111111,4
British,0.3333333333333333,0
Asian,0.1111111111111111,0
British,0.1111111111111111,0
British,0.1111111111111111,3
White,0.1111111111111111,0
British,0.1111111111111111,3
British,0.3333333333333333,4
Mixed,0.3333333333333333,4
British,0.7777777777777777,1

whilst the following is a snapshot of the distorted dataset by using ARX K-anonymity algorithm

NHSno,given_name,surname,gender,dob,ethnicity,education,salary,mutation_status,preventative_treatment,diagnosis
,,*,*,*,White British,*,0.3333333333333333,*,*,1
,,*,*,*,White British,*,0.1111111111111111,*,*,0
,,*,*,*,White British,*,0.1111111111111111,*,*,1
,,*,*,*,White British,*,0.3333333333333333,*,*,3
,,*,*,*,White British,*,0.1111111111111111,*,*,4
,,*,*,*,White British,*,0.3333333333333333,*,*,0
,,*,*,*,Bangladeshi,*,0.1111111111111111,*,*,0
,,*,*,*,White British,*,0.1111111111111111,*,*,0
,,*,*,*,White other,*,0.1111111111111111,*,*,0
,,*,*,*,White British,*,0.3333333333333333,*,*,4
,,*,*,*,White British,*,0.7777777777777777,*,*,1
,,*,*,*,White British,*,0.1111111111111111,*,*,2
,,*,*,*,White British,*,0.1111111111111111,*,*,2
,,*,*,*,White other,*,0.1111111111111111,*,*,2
,,*,*,*,White British,*,0.5555555555555556,*,*,0
,,*,*,*,White British,*,0.5555555555555556,*,*,4
,,*,*,*,White British,*,0.5555555555555556,*,*,0
,,*,*,*,White British,*,0.3333333333333333,*,*,0

Note that the K-anonymity algorithm removes some rows during the anonymization process, so there is no one-to-one correspondence
to the two outpus. Nonetheless, it shows qualitatively what the two algorithms produce.

References

	Richard S. Sutton and Andrw G. Barto, Reinforcement Learning. An Introduction 2nd Edition, MIT Press.

	
	
	
	
	Watkins, Learning from delayed rewards, King’s College, Cambridge, Ph.D. thesis, 1989.

Q-learning algorithm on mock data set

Overview

In the previous example, we applied Q-learning on a dataset consisting
of three columns. Moreover, we used a one dimensional state space; we discretized the range \([0,1]\) into bins and used the
resulting bin index as the state index. In this example, we will simply allow for more columns in the data set.
Other than that, this example is the same as the previous one.

Code

The necessary imports

import random
import numpy as np

from src.examples.helpers.load_full_mock_dataset import load_discrete_env, get_ethinicity_hierarchy, \
 get_gender_hierarchy, get_salary_bins, load_mock_subjects
from src.datasets import ColumnType
from src.spaces.env_type import DiscreteEnvType
from src.spaces.action_space import ActionSpace
from src.spaces.actions import ActionIdentity, ActionStringGeneralize, ActionNumericBinGeneralize
from src.algorithms.q_learning import QLearnConfig, QLearning
from src.policies.epsilon_greedy_policy import EpsilonGreedyPolicy, EpsilonDecayOption
from src.trainers.trainer import Trainer, TrainerConfig
from src.examples.helpers.plot_utils import plot_running_avg
from src.utils import INFO

Next establish a set of configuration parameters

configuration params
N_STATES = 10
GAMMA = 0.99
ALPHA = 0.1
PUNISH_FACTOR = 2.0
MAX_DISTORTION = 0.7
MIN_DISTORTION = 0.4
SAVE_DISTORTED_SETS_DIR = "/home/alex/qi3/drl_anonymity/src/examples/q_learning_all_cols_results/distorted_set"
EPS = 1.0
EPSILON_DECAY_OPTION = EpsilonDecayOption.CONSTANT_RATE # .INVERSE_STEP
EPSILON_DECAY_FACTOR = 0.01
USE_IDENTIFYING_COLUMNS_DIST = True
IDENTIFY_COLUMN_DIST_FACTOR = 0.1
N_EPISODES = 1001
N_ITRS_PER_EPISODE = 30
OUT_OF_MAX_BOUND_REWARD = -1.0
OUT_OF_MIN_BOUND_REWARD = -1.0
IN_BOUNDS_REWARD = 5.0
OUTPUT_MSG_FREQUENCY = 100
N_ROUNDS_BELOW_MIN_DISTORTION = 10

The dirver code brings all the elements together

if __name__ == '__main__':

 # set the seed for random engine
 random.seed(42)

 # specify the column types. An identifying column
 # will me removed from the anonymized data set
 # An INSENSITIVE_ATTRIBUTE remains intact.
 # A QUASI_IDENTIFYING_ATTRIBUTE is used in the anonymization
 # A SENSITIVE_ATTRIBUTE currently remains intact
 column_types = {"NHSno": ColumnType.IDENTIFYING_ATTRIBUTE,
 "given_name": ColumnType.IDENTIFYING_ATTRIBUTE,
 "surname": ColumnType.IDENTIFYING_ATTRIBUTE,
 "gender": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "dob": ColumnType.SENSITIVE_ATTRIBUTE,
 "ethnicity": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "education": ColumnType.SENSITIVE_ATTRIBUTE,
 "salary": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "mutation_status": ColumnType.SENSITIVE_ATTRIBUTE,
 "preventative_treatment": ColumnType.SENSITIVE_ATTRIBUTE,
 "diagnosis": ColumnType.INSENSITIVE_ATTRIBUTE}

 # define the action space
 action_space = ActionSpace(n=10)

 # all the columns that are SENSITIVE_ATTRIBUTE will be kept as they are
 # because currently we have no model
 # also INSENSITIVE_ATTRIBUTE will be kept as is
 # in order to declare this we use an ActionIdentity
 action_space.add_many(ActionIdentity(column_name="dob"),
 ActionIdentity(column_name="education"),
 ActionIdentity(column_name="salary"),
 ActionIdentity(column_name="diagnosis"),
 ActionIdentity(column_name="mutation_status"),
 ActionIdentity(column_name="preventative_treatment"),
 ActionIdentity(column_name="ethnicity"),
 ActionStringGeneralize(column_name="ethnicity",
 generalization_table=get_ethinicity_hierarchy()),
 ActionStringGeneralize(column_name="gender",
 generalization_table=get_gender_hierarchy()),
 ActionNumericBinGeneralize(column_name="salary",
 generalization_table=get_salary_bins(ds=load_mock_subjects(),
 n_states=N_STATES))
)
 action_space.shuffle()

 env = load_discrete_env(env_type=DiscreteEnvType.TOTAL_DISTORTION_STATE,
 n_states=N_STATES,
 min_distortion=MIN_DISTORTION, max_distortion=MAX_DISTORTION,
 total_min_distortion=MIN_DISTORTION, total_max_distortion=MAX_DISTORTION,
 out_of_max_bound_reward=OUT_OF_MAX_BOUND_REWARD,
 out_of_min_bound_reward=OUT_OF_MIN_BOUND_REWARD,
 in_bounds_reward=IN_BOUNDS_REWARD,
 punish_factor=PUNISH_FACTOR,
 column_types=column_types,
 action_space=action_space,
 save_distoreted_sets_dir=SAVE_DISTORTED_SETS_DIR,
 use_identifying_column_dist_in_total_dist=USE_IDENTIFYING_COLUMNS_DIST,
 use_identifying_column_dist_factor=IDENTIFY_COLUMN_DIST_FACTOR,
 gamma=GAMMA,
 n_rounds_below_min_distortion=N_ROUNDS_BELOW_MIN_DISTORTION)

 agent_config = QLearnConfig(n_itrs_per_episode=N_ITRS_PER_EPISODE, gamma=GAMMA,
 alpha=ALPHA,
 policy=EpsilonGreedyPolicy(eps=EPS, n_actions=env.n_actions,
 decay_op=EPSILON_DECAY_OPTION,
 epsilon_decay_factor=EPSILON_DECAY_FACTOR))

 agent = QLearning(algo_config=agent_config)

 trainer_config = TrainerConfig(n_episodes=N_EPISODES, output_msg_frequency=OUTPUT_MSG_FREQUENCY)
 trainer = Trainer(env=env, agent=agent, configuration=trainer_config)
 trainer.train()

 avg_rewards = trainer.total_rewards
 plot_running_avg(avg_rewards, steps=100,
 xlabel="Episodes", ylabel="Reward",
 title="Running reward average over 100 episodes")

 avg_episode_dist = np.array(trainer.total_distortions)
 print("{0} Max/Min distortion {1}/{2}".format(INFO, np.max(avg_episode_dist), np.min(avg_episode_dist)))

 plot_running_avg(avg_episode_dist, steps=100,
 xlabel="Episodes", ylabel="Distortion",
 title="Running distortion average over 100 episodes")

Results

The following images show the performance of the learning process

[image: ../_images/qlearn_rewards_all_cols.png]

Running average reward.

[image: ../_images/qlearn_distortion_multi_cols.png]

Running average total distortion.

References

	Richard S. Sutton and Andrw G. Barto, Reinforcement Learning. An Introduction 2nd Edition, MIT Press.

Semi-gradient SARSA algorithm on mock data set

Overview

In this example, we use the episodic semi-gradient SARSA algorithm to anonymize a data set.

Semi-gradient SARSA algorithm

One of the major disadvantages of Qlearning we saw in the previous examples, is that we need to use a tabular representation
of the state-action space. This poses limitations on how large the state space can be on current machines; for a data set with, say, 5 columns when each
is discretized using 10 bins, this creates a state space of the the order \(O(10^5)\). Although we won’t address this here,
we want to introduce the idea of weighting the columns. This idea comes from the fact that possibly not all columns carry the same
information regarding anonimity and data set utility. Implicitly we decode this belief by categorizing the columns as

ColumnType.IDENTIFYING_ATTRIBUTE
ColumnType.QUASI_IDENTIFYING_ATTRIBUTE
ColumnType.SENSITIVE_ATTRIBUTE
ColumnType.INSENSITIVE_ATTRIBUTE

Thus, in this example, instead to representing the state-action function \(q_{\pi}\) using a table as we did in Q-learning on a three columns dataset, we will assume a functional form for it. Specifically, we assume that the state-action function can be approximated by \(\hat{q} \approx q_{\pi}\) given by

\[\hat{q}(s, a) = \mathbf{w}^T\mathbf{x}(s, a) = \sum_{i}^{d} w_i, x_i(s, a)\]

where \(\mathbf{w}\) is the weights vector and \(\mathbf{x}(s, a)\) is called the feature vector representing state \(s\) when taking action \(a\) [1]. We will use Tile coding to construct \(\mathbf{x}(s, \alpha)\). Our goal now is to find the components of the weight vector.
We can use stochastic gradient descent (or SGD) for this [1]. In this case, the update rule is [1]

\[\mathbf{w}_{t + 1} = \mathbf{w}_t + \alpha\left[U_t - \gamma \hat{q}(s_t, a_t, \mathbf{w}_t)\right] \nabla_{\mathbf{w}} \hat{q}(s_t, a_t, \mathbf{w}_t)\]

where \(\alpha\) is the learning rate and \(U_t\), for one-step SARSA, is given by [1]:

\[U_t = R_t + \gamma \hat{q}(s_{t + 1}, a_{t + 1}, \mathbf{w}_t)\]

Since, \(\hat{q}(s, a)\) is a linear function with respect to the weights, its gradient is given by

\[\nabla_{\mathbf{w}} \hat{q}(s, a) = \mathbf{x}(s, a)\]

The semi-gradient SARSA algorithm is shown below

[image: ../_images/semi_gradient_sarsa.png]

Episodic semi-gradient SARSA algorithm. Image from [1].

Tile coding

Since we consider all the columns distortions in the data set, means that we deal with a multi-dimensional continuous spaces. In this case,
we can use tile coding to construct \(\mathbf{x}(s, \alpha)\) [1].

Tile coding is a form of coarse coding for multi-dimensional continuous spaces [1]. In this method, the features are grouped into partitions of the state
space. Each partition is called a tiling, and each element of the partition is called a
tile [1]. The following figure shows the a 2D state space partitioned in a uniform grid (left).
If we only use this tiling, we would not have coarse coding but just a case of state aggregation.

In order to apply coarse coding, we use overlapping tiling partitions. In this case, each tiling is offset by a fraction of a tile width [1].
A simple case with four tilings is shown on the right side of following figure.

[image: ../_images/tiling_example.png]

Multiple, overlapping grid-tilings on a limited two-dimensional space.
These tilings are offset from one another by a uniform amount in each dimension. Image from [1].

One practical advantage of tile coding is that the overall number of features that are active
at a given instance is the same for any state [1]. Exactly one feature is present in each tiling, so the total number of features present is
always the same as the number of tilings [1]. This allows the learning parameter \(\eta\), to be set according to

\[\eta = \frac{1}{n}\]

where \(n\) is the number of tilings.

Code

The necessary imports

import random
import numpy as np

from src.algorithms.semi_gradient_sarsa import SemiGradSARSAConfig, SemiGradSARSA
from src.spaces.tiled_environment import TiledEnv, TiledEnvConfig, Layer

from src.spaces.action_space import ActionSpace
from src.spaces.actions import ActionIdentity, ActionStringGeneralize, ActionNumericBinGeneralize
from src.trainers.trainer import Trainer, TrainerConfig
from src.policies.epsilon_greedy_policy import EpsilonDecayOption
from src.algorithms.epsilon_greedy_q_estimator import EpsilonGreedyQEstimatorConfig, EpsilonGreedyQEstimator
from src.datasets import ColumnType
from src.spaces.env_type import DiscreteEnvType
from src.examples.helpers.load_full_mock_dataset import load_discrete_env, get_ethinicity_hierarchy, \
 get_gender_hierarchy, get_salary_bins, load_mock_subjects
from src.examples.helpers.plot_utils import plot_running_avg
from src.utils import INFO

Next we set some constants

N_STATES = 10
N_LAYERS = 5
N_BINS = 10
N_EPISODES = 10001
OUTPUT_MSG_FREQUENCY = 100
GAMMA = 0.99
ALPHA = 0.1
N_ITRS_PER_EPISODE = 30
EPS = 1.0
EPSILON_DECAY_OPTION = EpsilonDecayOption.CONSTANT_RATE
EPSILON_DECAY_FACTOR = 0.01
MAX_DISTORTION = 0.7
MIN_DISTORTION = 0.4
OUT_OF_MAX_BOUND_REWARD = -1.0
OUT_OF_MIN_BOUND_REWARD = -1.0
IN_BOUNDS_REWARD = 5.0
N_ROUNDS_BELOW_MIN_DISTORTION = 10
SAVE_DISTORTED_SETS_DIR = "semi_grad_sarsa_all_columns/distorted_set"
PUNISH_FACTOR = 2.0
USE_IDENTIFYING_COLUMNS_DIST = True
IDENTIFY_COLUMN_DIST_FACTOR = 0.1

The driver code brings all elements together

if __name__ == '__main__':

 # set the seed for random engine
 random.seed(42)

 # specify the column types. An identifying column
 # will me removed from the anonymized data set
 # An INSENSITIVE_ATTRIBUTE remains intact.
 # A QUASI_IDENTIFYING_ATTRIBUTE is used in the anonymization
 # A SENSITIVE_ATTRIBUTE currently remains intact
 column_types = {"NHSno": ColumnType.IDENTIFYING_ATTRIBUTE,
 "given_name": ColumnType.IDENTIFYING_ATTRIBUTE,
 "surname": ColumnType.IDENTIFYING_ATTRIBUTE,
 "gender": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "dob": ColumnType.SENSITIVE_ATTRIBUTE,
 "ethnicity": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "education": ColumnType.SENSITIVE_ATTRIBUTE,
 "salary": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "mutation_status": ColumnType.SENSITIVE_ATTRIBUTE,
 "preventative_treatment": ColumnType.SENSITIVE_ATTRIBUTE,
 "diagnosis": ColumnType.INSENSITIVE_ATTRIBUTE}

 # define the action space
 action_space = ActionSpace(n=10)

 # all the columns that are SENSITIVE_ATTRIBUTE will be kept as they are
 # because currently we have no model
 # also INSENSITIVE_ATTRIBUTE will be kept as is
 # in order to declare this we use an ActionIdentity
 action_space.add_many(ActionIdentity(column_name="dob"),
 ActionIdentity(column_name="education"),
 ActionIdentity(column_name="salary"),
 ActionIdentity(column_name="diagnosis"),
 ActionIdentity(column_name="mutation_status"),
 ActionIdentity(column_name="preventative_treatment"),
 ActionIdentity(column_name="ethnicity"),
 ActionStringGeneralize(column_name="ethnicity",
 generalization_table=get_ethinicity_hierarchy()),
 ActionStringGeneralize(column_name="gender",
 generalization_table=get_gender_hierarchy()),
 ActionNumericBinGeneralize(column_name="salary",
 generalization_table=get_salary_bins(ds=load_mock_subjects(),
 n_states=N_STATES)))

 action_space.shuffle()

 # load the discrete environment
 env = load_discrete_env(env_type=DiscreteEnvType.MULTI_COLUMN_STATE, n_states=N_STATES,
 min_distortion={"ethnicity": 0.133, "salary": 0.133, "gender": 0.133,
 "dob": 0.0, "education": 0.0, "diagnosis": 0.0,
 "mutation_status": 0.0, "preventative_treatment": 0.0,
 "NHSno": 0.0, "given_name": 0.0, "surname": 0.0},
 max_distortion={"ethnicity": 0.133, "salary": 0.133, "gender": 0.133,
 "dob": 0.0, "education": 0.0, "diagnosis": 0.0,
 "mutation_status": 0.0, "preventative_treatment": 0.0,
 "NHSno": 0.1, "given_name": 0.1, "surname": 0.1},
 total_min_distortion=MIN_DISTORTION, total_max_distortion=MAX_DISTORTION,
 out_of_max_bound_reward=OUT_OF_MAX_BOUND_REWARD,
 out_of_min_bound_reward=OUT_OF_MIN_BOUND_REWARD,
 in_bounds_reward=IN_BOUNDS_REWARD,
 punish_factor=PUNISH_FACTOR,
 column_types=column_types,
 action_space=action_space,
 save_distoreted_sets_dir=SAVE_DISTORTED_SETS_DIR,
 use_identifying_column_dist_in_total_dist=USE_IDENTIFYING_COLUMNS_DIST,
 use_identifying_column_dist_factor=IDENTIFY_COLUMN_DIST_FACTOR,
 gamma=GAMMA,
 n_rounds_below_min_distortion=N_ROUNDS_BELOW_MIN_DISTORTION)

 # the configuration for the Tiled environment
 tiled_env_config = TiledEnvConfig(n_layers=N_LAYERS, n_bins=N_BINS,
 env=env,
 column_ranges={"gender": [0.0, 1.0],
 "ethnicity": [0.0, 1.0],
 "salary": [0.0, 1.0]})

 # create the Tiled environment
 tiled_env = TiledEnv(tiled_env_config)
 tiled_env.create_tiles()

 # agent configuration
 agent_config = SemiGradSARSAConfig(gamma=GAMMA, alpha=ALPHA, n_itrs_per_episode=N_ITRS_PER_EPISODE,
 policy=EpsilonGreedyQEstimator(EpsilonGreedyQEstimatorConfig(eps=EPS, n_actions=tiled_env.n_actions,
 decay_op=EPSILON_DECAY_OPTION,
 epsilon_decay_factor=EPSILON_DECAY_FACTOR,
 env=tiled_env,
 gamma=GAMMA,
 alpha=ALPHA)))
 # create the agent
 agent = SemiGradSARSA(agent_config)

 # create a trainer to train the SemiGradSARSA agent
 trainer_config = TrainerConfig(n_episodes=N_EPISODES, output_msg_frequency=OUTPUT_MSG_FREQUENCY)
 trainer = Trainer(env=tiled_env, agent=agent, configuration=trainer_config)

 # train the agent
 trainer.train()

 # avg_rewards = trainer.avg_rewards()
 avg_rewards = trainer.total_rewards
 plot_running_avg(avg_rewards, steps=100,
 xlabel="Episodes", ylabel="Reward",
 title="Running reward average over 100 episodes")

 avg_episode_dist = np.array(trainer.total_distortions)
 print("{0} Max/Min distortion {1}/{2}".format(INFO, np.max(avg_episode_dist), np.min(avg_episode_dist)))

 plot_running_avg(avg_episode_dist, steps=100,
 xlabel="Episodes", ylabel="Distortion",
 title="Running distortion average over 100 episodes")

[image: ../_images/sarsa_semi_grad_multi_cols_rewards.png]

Running average reward.

[image: ../_images/sarsa_semi_grad_multi_cols_distortion.png]

Running average total distortion.

The images above illustrate that there is clear evidence of learning as it was when using Qlearning. Furthermore, the training time is a lot more than
the simple Qlearning algorithm. Thus, with the current implementation of semi0gradient SARSA we do not have any clear advantage. Instead, it could be argued
that we maintain the constraints related with Qlearning (this comes form the tiling approach we used) without and clear advantage.

References

	Richard S. Sutton and Andrw G. Barto, Reinforcement Learning. An Introduction 2nd Edition, MIT Press.

A2C algorithm on mock data set

Overview

Both the Q-learning algorithm we used in Q-learning on a three columns dataset and the SARSA algorithm in
Semi-gradient SARSA on a three columns data set are value-based methods; that is they estimate directly value functions. Specifically the state-action function
\(Q\). By knowing \(Q\) we can construct a policy to follow for example to choose the action that at the given state
maximizes the state-action function i.e. \(argmax_{\alpha}Q(s_t, \alpha)\) i.e. a greedy policy. These methods are called off-policy methods.

However, the true objective of reinforcement learning is to directly learn a policy \(\pi\). One class of algorithms towards this directions are policy gradient algorithms
like REINFORCE and Advantage Actor-Critic or A2C algorithms. A review of A2C methods can be found in [1].

A2C algorithm

Typically with policy gradient methods and A2C in particular, we approximate directly the policy by a parameterized model.
Thereafter, we train the model i.e. learn its paramters by taking samples from the environment.
The main advantage of learning a parameterized policy is that it can be any learnable function e.g. a linear model or a deep neural network.

The A2C algorithm is a the synchronous version of A3C [2]. Both algorithms, fall under the umbrella of actor-critic methods. In these methods, we estimate a parameterized policy; the actor
and a parameterized value function; the critic. The role of the policy or actor network is to indicate which action to take on a given state. In our implementation below,
the policy network returns a probability distribution over the action space. Specifically, a tensor of probabilities. The role of the critic model is to evaluate how good is
the action that is selected.

In our implementation we use a shared-weights model and use a single agent that interacts with multiple instances of the
environment. In other words, we create a number of workers where each worker
loads its own instance of the data set to anonymize.

The objective of the agent is to maximize the expected discounted return [2]:

\[J(\pi_{\theta}) = E_{\tau \sim \rho_{\theta}}\left[\sum_{t=0}^T\gamma^t R(s_t, a_t)\right]\]

where \(\tau\) is the trajectory the agent observes with probability distribution \(\rho_{\theta}\), \(\gamma\) is the
discount factor and \(R(s_t, \alpha_t)\) represents some unknown to the agent reward function. We can rewrite the expression above as

\[J(\pi_{\theta}) = E_{\tau \sim \rho_{\theta}}\left[\sum_{t=0}^T\gamma^t R(s_t, a_t)\right] = \int \rho_{\theta} (\tau) \sum_{t=0}^T\gamma^t R(s_t, a_t) d\tau\]

Let’s condense the involved notation by using \(G(\tau)\) to denote the sum in the expression above i.e.

\[G(\tau) = \sum_{t=0}^T\gamma^t R(s_t, a_t)\]

The probability distribution \(\rho_{\theta}\) should be a function of the followed policy \(\pi_{\theta}\) as this dictates what action is followed. Indeed we can write [2],

\[\rho_{\theta} = p(s_0) \Pi_{t=0}^{\infty} \pi_{\theta}(a_t, s_t)P(s_{t+1}| s_t, a_t)\]

where \(P(s_{t+1}| s_t, a_t)\) denotes the state transition probabilities.
Policy gradient methods use the gardient of \(J(\pi_{\theta})\) in order to make progress. It turns out, see for example [2, 3] that we can write

\[\nabla_{\theta} J(\pi_{\theta}) = \int \rho_{\theta} \nabla_{\theta} log (\rho_{\theta}) G(\tau) d\tau\]

This equation above forms the essence of the policy gradient methods. However, we cannot fully evaluate the integral above as we don’t know the transition probabilities. We can eliminate the
term that involves the gradient \(\nabla_{\theta}\rho_{\theta}\) by using the expression for \(\rho_{\theta}\)

\[\nabla_{\theta}log(\rho_{\theta}) = \nabla_{\theta}log\left[p(s_0) \Pi_{t=0}^{\infty} \pi_{\theta}(a_t, s_t)P(s_{t+1}| s_t, a_t)\right]\]

From the expression above only the term \(\pi_{\theta}(a_t, s_t)\) involves \(\theta\). Thus,

\[\nabla_{\theta}log(\rho_{\theta}) = \sum_{t=0}^{\infty} \nabla_{\theta}log(\pi_{\theta}(a_t, s_t)\]

We will use the expression above as well as batches of trajectories in order to calculate the integral above. In particular,
we will use the following expression

\[\nabla_{\theta} J(\pi_{\theta}) \approx \frac{1}{N}\sum_{i=1}^{N}\left(\sum_{t=0}^{T} \nabla_{\theta}log(\pi_{\theta}(a_t, s_t) \right) G(\tau)\]

where \(N\) is the size of the batch. There are various expressions for \(G(\tau)\) (see e.g. [4]) . Belowe, we review some of them.
The first expression is given by

\[G(\tau) = \sum_{t=0}^T\gamma^t R(s_t, a_t)\]

and this is the expression used by the REINFORCE algorithm [2]. However, this is a full Monte Carlo estimate and when \(N\) is small the gradient estimation may exhibit high variance. In such cases learning may not be stable. Another expression we could employ is known as the reward-to-go term [2]:

\[G(\tau) = \sum_{t^{'} = t}^T\gamma^t R(s_{t^{`}}, a_{t^{`}})\]

Another idea is to use a baseline in order to reduce further the gradient variance [2]. One such approach is to use the so-called advantage function \(A(s_t, \alpha_t)\) defined as [2]

\[A(s_t, a_t) = Q_{\pi}(s_t, a_t) - V_{\pi}(s_t)\]

The advantage function measures how much the agent is better off by taking action \(a_t\) when in state \(s_t\) as opposed to following the existing policy.
Let’s see how we can estimate the advantage function.

Estimate \(A(s_t, a_t)\)

The advantage function involes both the state-action value function \(Q_{\pi}(s_t, a_t)\) as well as the value function \(V_{\pi}(s_t)\).
Given a model that somehow estimates \(V_{\pi}(s_t)\), we can estimate \(Q_{\pi}(s_t, a_t)\) from

\[Q_{\pi}(s_t, a_t) \approx G(\tau)\]

or

\[Q_{\pi}(s_t, a_t) \approx r_{t+1} + \gamma V_{\pi}(s_{t+1})\]

Resulting in

\[A(s_t, a_t) = r_{t+1} + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t)\]

GAE

The advantage actor-critic model we use in this section involves a more general form of the advanatge estimation known as Generalized Advantage Estimation or GAE.
This is a method for estimating targets for the advantage function [3]. Specifically, we use the following expression for the advantage function [4]

\[A(s_t, a_t)^{GAE(\gamma, \lambda)} = \sum_{l=0}^{\infty}(\gamma\lambda)^l \delta_{t+1}\]

when \(\lambda=0\) this expression results to the the expression for \(A(s_t, a_t)\) [4].

A2C model

As we already mentioned, in actor-critic methods, there are two models; the actor
and the critic. The role of the policy or actor model is to indicate which action to take on a given state
There are two main architectures for actor-critic methods; completely isolated actor and critic models or weight sharing models [2].
In the former, the two models share no common aspects. The advantage of such an approach is that it is usually more stable.
The second architecture allows for the two models to share some characteristics and differentiate in the last layers. Although this second option
requires careful tuning of the hyperparameters, it has the advantage of cross learning and use common extraction capabilities [2].

In this example, we will follow the second architecture. Moreover, to speed up training, we will use a multi-process environment
that gathers samples from multiple environments at once.

The loss function, we minimize is a weighted sum of the two loss functions of the participating models i.e.

\[L(\theta) = w_1 L_{\pi}(\theta) + w_2 L_{V_{\pi}}(\theta)\]

where

\[L_{\pi}(\theta) = J(\pi(\theta)) ~~ L_{V_{\pi}}(\theta) = MSE(y_i, V_{\pi}(s_i))\]

where \(MSE\) is the mean square error function and \(y_i\) are the state-value targets i.e.

\[y_i = r_i + \gamma V_{\pi}(s_{i}^{'}), ~~ i = 1, \cdots, N\]

Code

import random
from pathlib import Path
import numpy as np
import torch

from src.algorithms.a2c import A2C, A2CConfig
from src.networks.a2c_networks import A2CNetSimpleLinear
from src.examples.helpers.load_full_mock_dataset import load_discrete_env, get_ethinicity_hierarchy, \
 get_gender_hierarchy, get_salary_bins, load_mock_subjects
from src.datasets import ColumnType
from src.spaces.env_type import DiscreteEnvType
from src.spaces.action_space import ActionSpace
from src.spaces.actions import ActionIdentity, ActionStringGeneralize, ActionNumericBinGeneralize
from src.utils.iteration_control import IterationControl
from src.examples.helpers.plot_utils import plot_running_avg
from src.spaces.multiprocess_env import MultiprocessEnv
from src.trainers.pytorch_trainer import PyTorchTrainer, PyTorchTrainerConfig
from src.maths.optimizer_type import OptimizerType
from src.maths.pytorch_optimizer_config import PyTorchOptimizerConfig
from src.utils import INFO

N_STATES = 10
N_ITRS_PER_EPISODE = 400
ACTION_SPACE_SIZE = 10
N_WORKERS = 3
N_EPISODES = 1001
GAMMA = 0.99
ALPHA = 0.1
PUNISH_FACTOR = 2.0
MAX_DISTORTION = 0.7
MIN_DISTORTION = 0.4
SAVE_DISTORTED_SETS_DIR = "/home/alex/qi3/drl_anonymity/src/examples/a2c_all_cols_multi_state_results/distorted_set"
USE_IDENTIFYING_COLUMNS_DIST = True
IDENTIFY_COLUMN_DIST_FACTOR = 0.1
OUT_OF_MAX_BOUND_REWARD = -1.0
OUT_OF_MIN_BOUND_REWARD = -1.0
IN_BOUNDS_REWARD = 5.0
OUTPUT_MSG_FREQUENCY = 100
N_ROUNDS_BELOW_MIN_DISTORTION = 10
N_COLUMNS = 11

def env_loader(kwargs):

 column_types = {"NHSno": ColumnType.IDENTIFYING_ATTRIBUTE,
 "given_name": ColumnType.IDENTIFYING_ATTRIBUTE,
 "surname": ColumnType.IDENTIFYING_ATTRIBUTE,
 "gender": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "dob": ColumnType.SENSITIVE_ATTRIBUTE,
 "ethnicity": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "education": ColumnType.SENSITIVE_ATTRIBUTE,
 "salary": ColumnType.QUASI_IDENTIFYING_ATTRIBUTE,
 "mutation_status": ColumnType.SENSITIVE_ATTRIBUTE,
 "preventative_treatment": ColumnType.SENSITIVE_ATTRIBUTE,
 "diagnosis": ColumnType.INSENSITIVE_ATTRIBUTE}

 # define the action space
 action_space = ActionSpace(n=ACTION_SPACE_SIZE)

 # all the columns that are SENSITIVE_ATTRIBUTE will be kept as they are
 # because currently we have no model
 # also INSENSITIVE_ATTRIBUTE will be kept as is
 # in order to declare this we use an ActionIdentity
 action_space.add_many(ActionIdentity(column_name="dob"),
 ActionIdentity(column_name="education"),
 ActionIdentity(column_name="salary"),
 ActionIdentity(column_name="diagnosis"),
 ActionIdentity(column_name="mutation_status"),
 ActionIdentity(column_name="preventative_treatment"),
 ActionIdentity(column_name="ethnicity"),
 ActionStringGeneralize(column_name="ethnicity",
 generalization_table=get_ethinicity_hierarchy()),
 ActionStringGeneralize(column_name="gender",
 generalization_table=get_gender_hierarchy()),
 ActionNumericBinGeneralize(column_name="salary",
 generalization_table=get_salary_bins(ds=load_mock_subjects(),
 n_states=N_STATES)))
 # shuffle the action space
 # using different seeds
 action_space.shuffle(seed=kwargs["rank"] + 1)

 env = load_discrete_env(env_type=DiscreteEnvType.MULTI_COLUMN_STATE, n_states=N_STATES,
 min_distortion={"ethnicity": 0.133, "salary": 0.133, "gender": 0.133,
 "dob": 0.0, "education": 0.0, "diagnosis": 0.0,
 "mutation_status": 0.0, "preventative_treatment": 0.0,
 "NHSno": 0.0, "given_name": 0.0, "surname": 0.0},
 max_distortion={"ethnicity": 0.133, "salary": 0.133, "gender": 0.133,
 "dob": 0.0, "education": 0.0, "diagnosis": 0.0,
 "mutation_status": 0.0, "preventative_treatment": 0.0,
 "NHSno": 0.1, "given_name": 0.1, "surname": 0.1},
 total_min_distortion=MIN_DISTORTION, total_max_distortion=MAX_DISTORTION,
 out_of_max_bound_reward=OUT_OF_MAX_BOUND_REWARD,
 out_of_min_bound_reward=OUT_OF_MIN_BOUND_REWARD,
 in_bounds_reward=IN_BOUNDS_REWARD,
 punish_factor=PUNISH_FACTOR,
 column_types=column_types,
 action_space=action_space,
 save_distoreted_sets_dir=SAVE_DISTORTED_SETS_DIR,
 use_identifying_column_dist_in_total_dist=USE_IDENTIFYING_COLUMNS_DIST,
 use_identifying_column_dist_factor=IDENTIFY_COLUMN_DIST_FACTOR,
 gamma=GAMMA,
 n_rounds_below_min_distortion=N_ROUNDS_BELOW_MIN_DISTORTION)

 # we want to get the distances as states
 # not bin indices
 env.config.state_as_distances = True

 return env

def action_sampler(logits: torch.Tensor) -> torch.distributions.Distribution:

 action_dist = torch.distributions.Categorical(logits=logits)
 return action_dist

if __name__ == '__main__':
 # set the seed for random engine
 random.seed(42)

 # set the seed for PyTorch
 torch.manual_seed(42)

 # this the A2C network
 net = A2CNetSimpleLinear(n_columns=N_COLUMNS, n_actions=ACTION_SPACE_SIZE)

 # agent configuration
 a2c_config = A2CConfig(action_sampler=action_sampler, n_iterations_per_episode=N_ITRS_PER_EPISODE,
 a2cnet=net, save_model_path=Path("./a2c_three_columns_output/"),
 n_workers=N_WORKERS,
 optimizer_config=PyTorchOptimizerConfig(optimizer_type=OptimizerType.ADAM,
 optimizer_learning_rate=ALPHA))

 # create the agent
 agent = A2C(a2c_config)

 # create a trainer to train the Qlearning agent
 configuration = PyTorchTrainerConfig(n_episodes=N_EPISODES)

 # set up the arguments
 env = MultiprocessEnv(env_builder=env_loader, env_args={}, n_workers=N_WORKERS)

 try:

 env.make(agent=agent)
 trainer = PyTorchTrainer(env=env, agent=agent, config=configuration)

 # train the agent
 trainer.train()

 avg_rewards = trainer.total_rewards
 plot_running_avg(avg_rewards, steps=100,
 xlabel="Episodes", ylabel="Reward",
 title="Running reward average over 100 episodes")

 avg_episode_dist = np.array(trainer.total_distortions)
 print("{0} Max/Min distortion {1}/{2}".format(INFO, np.max(avg_episode_dist), np.min(avg_episode_dist)))

 plot_running_avg(avg_episode_dist, steps=100,
 xlabel="Episodes", ylabel="Distortion",
 title="Running distortion average over 100 episodes")

 # play the agent on the environment.
 # call the environment builder to create
 # an instance of the environment
 discrte_env = env.env_builder()

 stop_criterion = IterationControl(n_itrs=10, min_dist=MIN_DISTORTION, max_dist=MAX_DISTORTION)
 agent.play(env=discrte_env, criteria=stop_criterion)

 except Exception as e:
 print("An excpetion was thrown...{0}".format(str(e)))
 finally:
 env.close()

Results

The following images show the performance of the learning process

[image: ../_images/a2c_multi_cols_multi_state_rewards.png]

Running average reward.

[image: ../_images/a2c_multi_cols_multi_state_distortion.png]

Running average total distortion.

References

	Ivo Grondman, Lucian Busoniu, Gabriel A. D. Lopes, Robert Babuska, A survey of Actor-Critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, Man and Cybernetics-Part C Applications and Reviews, vol 12, 2012.

	Enes Bilgin, Mastering reinforcement learning with python. Packt Publishing.

	Miguel Morales, Grokking deep reinforcement learning. Manning Publications.

	John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel, High-Dimensional Continuous Control Using Generalized Advantage Estimation [https://arxiv.org/abs/1506.02438], Last download 26/04/2022.

API

	epsilon_greedy_q_estimator

	a2c

	q_learning

	semi_gradient_sarsa

	column_type

	datasets_loaders

	dataset_wrapper

	exceptions

	optimizer_type

	pytorch_optimizer_builder

	loss_functions

	distortion_calculator

	numeric_distance_type

	numeric_distance_calculator

	pytorch_optimizer_config

	string_distance_calculator

	a2c_networks

	processes_manager

	epsilon_greedy_policy

	preprocess_utils

	actions

	action_space

	state

	discrete_state_environment

	tiled_environment

	time_step

	multiprocess_env

	replay_buffer

	trainer

	pytorch_trainer

	replay_buffer

	iteration_control

	function_wraps

	episode_info

	mixins

	reward_manager

	serial_hierarchy

epsilon_greedy_q_estimator

Module epsilon_greedy_q_estimator. Implements
a q-estimator by assuming linear function approximation

	
class epsilon_greedy_q_estimator.EpsilonGreedyQEstimatorConfig(eps: float = 1.0, n_actions: int = 1, decay_op: EpsilonDecayOption = EpsilonDecayOption.NONE, max_eps: float = 1.0, min_eps: float = 0.001, epsilon_decay_factor: float = 0.01, user_defined_decrease_method: Optional[UserDefinedDecreaseMethod] = None, gamma: float = 1.0, alpha: float = 1.0, env: Optional[Env] = None)

	Configuration class for EpsilonGreedyQEstimator

	
class epsilon_greedy_q_estimator.EpsilonGreedyQEstimator(config: EpsilonGreedyQEstimatorConfig)

	Q-function estimator using an epsilon-greedy policy
for action selection

	
__init__(config: EpsilonGreedyQEstimatorConfig)

	Constructor. Initialize the estimator with a given configuration

	Parameters

	config (The instance configuration) –

	
initialize() → None

	Initialize the underlying weights

	Return type

	None

	
on_state(state: State) → Action

	Returns the action on the given state

	Parameters

	state (The state observed) –

	Return type

	An environment specific Action type

	
q_hat_value(state_action_vec: StateActionVec) → float

	Returns the :math: hat{q} approximate value for the
given state-action vector

	Parameters

	state_action_vec (The state-action tiled vector) –

	Return type

	float

a2c

	
a2c.calculate_discounted_returns(rewards: array, discounts: array, n_workers: int = 1) → array

	Calculate the discounted returns from the episode rewards

	Parameters

	
	rewards (The list of rewards) –

	discounts (The discount factor) –

	n_workers (The number of workers) –

	
a2c.create_discounts_array(end: int, base: float, start=0, endpoint=False)

	Create an array of floating point numbers in [start, end)
with the given base

	Parameters

	
	end –

	base –

	start –

	endpoint –

	
class a2c.A2CConfig(gamma: float = 0.99, tau: float = 0.1, beta: Optional[float] = None, policy_loss_weight: float = 1.0, value_loss_weight: float = 1.0, max_grad_norm: float = 1.0, n_iterations_per_episode: int = 100, n_workers: int = 1, batch_size: int = 0, normalize_advantages: bool = True, device: str = 'cpu', action_sampler: Optional[Callable] = None, a2cnet: Optional[Module] = None, save_model_path: Optional[Path] = None, optimizer_config: Optional[PyTorchOptimizerConfig] = None)

	Configuration for A2C algorithm

	
class a2c._ActResult(logprobs: torch.Tensor, values: torch.Tensor, actions: torch.Tensor, entropies: torch.Tensor)

	

	
class a2c.A2C(config: A2CConfig)

	
	
__init__(config: A2CConfig)

	

	
_do_train(env: Env, episode_idx: int, **options) → EpisodeInfo

	Train the algorithm on the episode. In fact this method simply
plays the environment to collect batches

	Parameters

	
	env (The environment to train on) –

	episode_idx (The index of the training episode) –

	options (Any keyword based options passed by the client code) –

	Return type

	An instance of EpisodeInfo

	
classmethod from_path(config: A2CConfig, path: Path)

	Load the A2C model parameters from the given path

	Parameters

	
	config (The configuration of the algorithm) –

	path (The path to load the parameters) –

	Return type

	An instance of A2C class

	
on_episode(env: Env, episode_idx: int, **options) → EpisodeInfo

	Train the algorithm on the episode

	Parameters

	
	env (The environment to train on) –

	episode_idx (The index of the training episode) –

	options (Any keyword based options passed by the client code) –

	Return type

	An instance of EpisodeInfo

	
parameters() → Any

	The parameters of the underlying model

	Return type

	An array with the model parameters

q_learning

Simple Q-learning algorithm

	
class q_learning.QLearnConfig(gamma: float = 1.0, alpha: float = 0.1, n_itrs_per_episode: int = 100, policy: Optional[Policy] = None)

	Configuration for Q-learning

	
class q_learning.QLearning(algo_config: QLearnConfig)

	Q-learning algorithm implementation

	
__init__(algo_config: QLearnConfig)

	Constructor. Construct an instance of the algorithm
by passing the configuration parameters

	Parameters

	algo_config (The configuration parameters) –

	
_do_train(env: Env, episode_idx: int, **option) → EpisodeInfo

	Train the algorithm on the episode

	Parameters

	
	env (The environment to train on) –

	episode_idx (The index of the training episode) –

	options (Any keyword based options passed by the client code) –

	Return type

	An instance of EpisodeInfo

	
_update_q_table(state: int, action: int, n_actions: int, reward: float, next_state: Optional[int] = None) → None

	Update the tabular state-action function

	Parameters

	
	state (State observed) –

	action (The action taken) –

	n_actions (Number of actions in the data set) –

	reward (The reward observed) –

	next_state (The next state observed) –

	Return type

	None

	
actions_after_episode_ends(env: Env, episode_idx: int, **options) → None

	Execute any actions the algorithm needs after
the episode ends

	Parameters

	
	env (The environment that training occurs) –

	episode_idx (The episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
actions_before_training(env: Env, **options) → None

	Any actions before training begins

	Parameters

	
	env (The environment that training occurs) –

	options (Any options passed by the client code) –

	Return type

	None

	
on_episode(env: Env, episode_idx: int, **options) → EpisodeInfo

	Train the algorithm on the episode

	Parameters

	
	env (The environment to train on) –

	episode_idx (The index of the training episode) –

	options (Any keyword based options passed by the client code) –

	Return type

	An instance of EpisodeInfo

	
play(env: Env, stop_criterion: Criterion) → None

	Play the agent on the environment. This should produce
a distorted dataset

	Parameters

	
	env (The environment to) –

	stop_criterion (The criteria to use to stop) –

	Return type

	None

semi_gradient_sarsa

Module semi_gradient_sarsa. Implements
episodic semi-gradient SARSA for estimating the state-action
value function. the im[plementation follows the algorithm
at page 244 in the book by Sutton and Barto: Reinforcement Learning An Introduction
second edition 2020

	
class semi_gradient_sarsa.SemiGradSARSAConfig(gamma: float = 1.0, alpha: float = 0.1, n_itrs_per_episode: int = 100, policy: Optional[Policy] = None)

	Configuration class for semi-gradient SARSA algorithm

	
class semi_gradient_sarsa.SemiGradSARSA(config: SemiGradSARSAConfig)

	SemiGradSARSA class. Implements the semi-gradient SARSA algorithm
as described

	
__init__(config: SemiGradSARSAConfig) → None

	

	
_do_train(env: Env, episode_idx: int, **options) → EpisodeInfo

	Train the algorithm on the episode

	Parameters

	
	env (The environment to train on) –

	episode_idx (The index of the training episode) –

	options (Any keyword based options passed by the client code) –

	Return type

	An instance of EpisodeInfo

	
_init() → None

	Any initializations needed before starting the training

	Return type

	None

	
_validate() → None

	Validate the state of the agent. Is called before
any training begins to check that the starting state is sane

	Return type

	None

	
_weights_update(env: Env, state: State, action: Action, reward: float, next_state: State, next_action: Action, t: float = 1.0) → None

	Update the weights due to the fact that
the episode is finished

	Parameters

	
	env (The environment instance that the training takes place) –

	state (The current state) –

	action (The action we took at state) –

	reward (The reward observed when taking the given action when at the given state) –

	next_state (The observed new state) –

	next_action (The action to be executed in next_state) –

	Return type

	None

	
_weights_update_episode_done(env: Env, state: State, action: Action, reward: float, t: float = 1.0) → None

	Update the weights of the underlying Q-estimator

	Parameters

	
	state (The current state it is assumed to be a raw state) –

	reward (The reward observed when taking the given action when at the given state) –

	action (The action we took at the state) –

	Return type

	None

	
actions_after_episode_ends(env: Env, episode_idx: int, **options) → None

	Any actions after the training episode ends

	Parameters

	
	env (The training environment) –

	episode_idx (The training episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
actions_before_episode_begins(env: Env, episode_idx: int, **options) → None

	Any actions to perform before the episode begins

	Parameters

	
	env (The instance of the training environment) –

	episode_idx (The training episode index) –

	options (Any keyword options passed by the client code) –

	Return type

	None

	
actions_before_training(env: Env, **options) → None

	Specify any actions necessary before training begins

	Parameters

	
	env (The environment to train on) –

	options (Any key-value options passed by the client) –

	Return type

	None

	
on_episode(env: Env, episode_idx: int, **options) → EpisodeInfo

	Train the algorithm on the episode

	Parameters

	
	env (The environment to train on) –

	episode_idx (The index of the training episode) –

	options (Any keyword based options passed by the client code) –

	Return type

	An instance of EpisodeInfo

	
play(env: Env, stop_criterion: Criterion) → None

	Play the agent on the environment. This should produce
a distorted dataset

	Parameters

	
	env (The environment to) –

	stop_criterion (The criteria to use to stop) –

	Return type

	None

column_type

Module column_type specifies an enumeration of the
column. This is similar to the ARX software.
See the ARX documentation at:
https://arx.deidentifier.org/wp-content/uploads/javadoc/current/api/org/deidentifier/arx/AttributeType.html

	
class column_type.ColumnType(value)

	An enumeration.

datasets_loaders

dataset_wrapper

exceptions

	
class exceptions.Error(message)

	General error class to handle generic errors

	
__init__(message) → None

	

	
__str__()

	Return str(self).

	
class exceptions.IncompatibleVectorSizesException(size1: int, size2: int)

	
	
__init__(size1: int, size2: int) → None

	

	
__str__()

	Return str(self).

	
class exceptions.InvalidDataTypeException(param_name: str, param_type: Any, param_types: str)

	
	
__init__(param_name: str, param_type: Any, param_types: str)

	

	
__str__()

	Return str(self).

	
class exceptions.InvalidFileFormat(filename)

	
	
__init__(filename)

	

	
__str__()

	Return str(self).

	
class exceptions.InvalidParamValue(param_name: str, param_value: str)

	
	
__init__(param_name: str, param_value: str)

	

	
__str__()

	Return str(self).

	
class exceptions.InvalidSchemaException(message: str)

	
	
__init__(message: str) → None

	

	
__str__()

	Return str(self).

	
class exceptions.InvalidStateException(type_name: str, state_type: str)

	
	
__init__(type_name: str, state_type: str) → None

	

	
__str__()

	Return str(self).

optimizer_type

Module optimizer_type. Specifies an
enumeration for various PyTorch optimizers

	
class optimizer_type.OptimizerType(value)

	An enumeration.

pytorch_optimizer_builder

Module pytorch_optimizer_builder. Specifies
a simple factory for building PyTorch optimizers

	
pytorch_optimizer_builder.pytorch_optimizer_builder(opt_type: OptimizerType, model_params: Any, **options) → Optimizer

	Factory method for building PyTorch optimizers

	Parameters

	
	opt_type (The type of the optimizer) –

	model_params (Model parameters to optimize on) –

	options (Options for the optimizer) –

	Return type

	A concrete instance of the optim.Optimizer class

loss_functions

Module loss_functions. Implements basic loss functions
geared towards using PyTorch

	
loss_functions.mse(returns: Tensor, values: Tensor) → Tensor

	Mean square error loss function

	Parameters

	
	returns (Values 1) –

	values (Values 2) –

	Return type

	A torch tensor representing the MSE loss

distortion_calculator

numeric_distance_type

Enumeration helper for quick and uniform
access of the various distance metrics

	
class numeric_distance_type.NumericDistanceType(value)

	Enumeration of the various distance types

numeric_distance_calculator

pytorch_optimizer_config

Module pytorch_optimizer_configuration. Specifies a
data class for configuring PyTorch optimizers

	
class pytorch_optimizer_config.PyTorchOptimizerConfig(optimizer_type: OptimizerType = OptimizerType.ADAM, optimizer_learning_rate: float = 0.01, optimizer_betas: tuple = (0.9, 0.999), optimizer_weight_decay: float = 0, optimizer_amsgrad: bool = False)

	Configuration class for the optimizer

string_distance_calculator

a2c_networks

Module a2c_networks. Specifies various networks
for A2C algorithm

	
class a2c_networks.A2CNetSimpleLinear(n_columns: int, n_actions: int)

	A2CNetSimpleLinear. Specifies a network architecture
consisting of three linear layers

	
__init__(n_columns: int, n_actions: int)

	Constructor.

	Parameters

	
	n_columns (Number of columns) –

	n_actions (Number of actions) –

	
forward(x: Tensor) → tuple

	Pass the state from the network

	Parameters

	x (The torch tensor that represents the state) –

	Return type

	The actor and the critic values

processes_manager

module process_manager. Utilities for managing
processes

	
class processes_manager.TorchProcsHandler(n_procs: int)

	The TorchProcsHandler class. Utility
class to handle PyTorch processe

	
__init__(n_procs: int) → None

	Constructor

	Parameters

	n_procs (The number of processes to handle) –

	
__len__() → int

	The number of workers handled by this
instance

epsilon_greedy_policy

Module epsilon_greedy_policy. Implements epsilon-greedy
policy with various decay options

	
class epsilon_greedy_policy.EpsilonDecayOption(value)

	Options for reducing epsilon

	
class epsilon_greedy_policy.EpsilonGreedyConfig(eps: float = 1.0, n_actions: int = 1, decay_op: EpsilonDecayOption = EpsilonDecayOption.NONE, max_eps: float = 1.0, min_eps: float = 0.001, epsilon_decay_factor: float = 0.01, user_defined_decrease_method: Optional[UserDefinedDecreaseMethod] = None)

	Configuration class for EpsilonGreedyPolicy

	
class epsilon_greedy_policy.EpsilonGreedyPolicy(eps: float, n_actions: int, decay_op: EpsilonDecayOption, max_eps: float = 1.0, min_eps: float = 0.001, epsilon_decay_factor: float = 0.01, user_defined_decrease_method: Optional[UserDefinedDecreaseMethod] = None)

	Epsilon-greedy policy implementation

	
__call__(q_table: QTable, state: State) → int

	Execute the policy

	Parameters

	
	q_table (The q-table to use) –

	state (The state observed) –

	Return type

	An integer representing the action index

	
__init__(eps: float, n_actions: int, decay_op: EpsilonDecayOption, max_eps: float = 1.0, min_eps: float = 0.001, epsilon_decay_factor: float = 0.01, user_defined_decrease_method: Optional[UserDefinedDecreaseMethod] = None)

	Constructor. Initialize a policy with the given options

	Parameters

	
	eps (The initial epsilon) –

	n_actions (How many actions the environment assumes) –

	decay_op (How to decay epsilon) –

	max_eps (The maximum epsilon) –

	min_eps (The minimum epsilon) –

	epsilon_decay_factor (A decay factor used when decay_op = CONSTANT_RATE) –

	user_defined_decrease_method (A user defined callable to decay epsilon) –

	
__str__() → str

	Returns the name of the policy

	Return type

	A string representing the name of the policy

	
actions_after_episode(episode_idx: int, **options) → None

	Any actions the policy should execute after the episode ends

	Parameters

	
	episode_idx (The episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
classmethod from_config(config: EpsilonGreedyConfig)

	Construct a policy from the given configuration

	Parameters

	config (The configuration to use) –

	Return type

	An instance of EpsilonGreedyPolicy class

	
on_state(state: State) → int

	Returns the optimal action on the current state

	Parameters

	state (The state observed) –

	Return type

	An integer representing the action index

preprocess_utils

actions

The actions module. This module includes
various actions to be applied by the implemented RL agents

	
class actions.ActionType(value)

	Defines the type of an Action

	
class actions.ActionBase(column_name: str, action_type: ActionType)

	Base class for actions

	
__init__(column_name: str, action_type: ActionType) → None

	Constructor

	Parameters

	
	column_name (The name of the column this is acting on) –

	action_type (The type of the action) –

	
abstract act(**ops) → Any

	Perform the action

	Parameters

	ops (The data to distort) –

	Return type

	Typically the action returns the distorted subset of the data

	
class actions.ActionIdentity(column_name: str)

	Implements the identity action. Use this action
to signal that no distortion should be applied.

	
__init__(column_name: str) → None

	Constructor

	Parameters

	column_name (The name of the column this is acting on) –

	
act(**ops) → Any

	Perform the action

	Parameters

	ops (The data to distort) –

	Return type

	The distorted column

	
class actions.ActionNumericBinGeneralize(column_name: str, generalization_table: Hierarchy)

	Generalization Action for numeric columns using bins

	
__init__(column_name: str, generalization_table: Hierarchy)

	Constructor
:param column_name:
:type column_name: The name of the column this is acting on
:param generalization_table:
:type generalization_table: The bins to use

	
act(**ops) → Any

	Perform the action
:param ops:
:type ops: The data to distort

	Return type

	Typically the action returns the distorted subset of the data

	
class actions.ActionNumericStepGeneralize(column_name: str, step: float)

	
	
__init__(column_name: str, step: float)

	Constructor

	Parameters

	
	column_name (The name of the column this is acting on) –

	action_type (The type of the action) –

	
act(**ops)

	Perform an action
:return:

	
class actions.ActionRestore(column_name: str, restore_values: Hierarchy)

	Implements the restore action

	
__init__(column_name: str, restore_values: Hierarchy)

	Constructor

	Parameters

	
	column_name (The name of the column this is acting on) –

	action_type (The type of the action) –

	
act(**ops) → Any

	Perform an action
:return:

	
class actions.ActionStringGeneralize(column_name: str, generalization_table: Hierarchy)

	Implements the generalization action. The generalization_table
must implement the __getitem__ function

	
__init__(column_name: str, generalization_table: Hierarchy) → None

	Constructor

	Parameters

	
	column_name (The column name this action is acting on) –

	generalization_table (The hierarchy for the generalization) –

	
act(**ops) → Any

	Performs the action

	Parameters

	ops (The data to distort) –

	Return type

	The distorted data

	
add(key: Any, value: Any) → None

	Add a new item in the underlying hierarchy

	Parameters

	
	key (The key to use for the new item) –

	value (The value of the new item) –

	Return type

	None

	
class actions.ActionSuppress(column_name: str, suppress_table: Hierarchy)

	Implements the suppress action

	
__init__(column_name: str, suppress_table: Hierarchy)

	Constructor

	Parameters

	
	column_name (The name of the column this is acting on) –

	action_type (The type of the action) –

	
act(**ops) → None

	Perform the action
:return: None

	
class actions.ActionTransform(column_name: str, transform_value: Any)

	Implements the transform action

	
__init__(column_name: str, transform_value: Any)

	Constructor

	Parameters

	
	column_name (The name of the column this is acting on) –

	action_type (The type of the action) –

	
act(**ops) → Any

	Perform an action
:return:

action_space

Module action_space
Specifies a wrapper to the discrete
actions in the actions.py module

	
class action_space.ActionSpace(n: int)

	ActionSpace class models a discrete action space of size n

state

The state module. Specifies a wrapper
to a state such that it exposes column distortions
and the bin index of the overall distortion.

	
class state.StateIterator(values: List)

	StateIterator class. Helper class to iterate over the
columns of a State object

	
__init__(values: List)

	

	
__len__()

	Returns the total number of items in the iterator
:return:

	
property at: Any

	Returns the value of the iterator at the current position
without incrementing the position of the iterator
:return: Any

	
property finished: bool

	Returns true if the iterator is exhausted
:return:

	
class state.State

	Helper to represent a State

	
__contains__(column_name: str) → bool

	Returns true if column_name is in the column_distortions
keys

	Parameters

	column_name (The column name to query) –

	Returns

	
	A boolean indicating if column_name is in the column_distortions

	keys or not.

	
__getitem__(name: str) → float

	Get the distortion corresponding to the name-th column

	Parameters

	name (The name of the column) –

	Return type

	The column distortion

	
__init__()

	

discrete_state_environment

RL Environment API taken from
https://github.com/deepmind/dm_env/blob/master/dm_env/_environment.py

Classes

	DiscreteEnvConfig([data_set, action_space, ...])

	Configuration for discrete environment

	DiscreteStateEnvironment(env_config)

	The DiscreteStateEnvironment class.

tiled_environment

time_step

Module time_step. Specifies a wrapper
for representing a step in the environment

	
time_step.copy_time_step(time_step: TimeStep, **copy_options) → TimeStep

	Helper to copy partly or in whole a TimeStep namedtuple.
If copy_options is None or empty it returns a deep copy
of the given time step

	Parameters

	
	time_step (The time step to copy) –

	copy_options (Members to be copied) –

	Return type

	An instance of the TimeStep namedtuple

	
class time_step.StepType(value)

	Defines the status of a TimeStep within a sequence.

	
class time_step.TimeStep(step_type, info, reward, discount, observation)

	

multiprocess_env

Module multiprocess_env. Specifies
a vectorized environment where each instance
of the environment is run independently. The implementation
of the environment is taken from the book
Grokking Deep Reinforcement Learning Algorithms
by Manning publications

	
class multiprocess_env.MultiprocessEnv(env_builder: Callable, env_args: dict, n_workers: int)

	MultiprocessEnv class

	
__init__(env_builder: Callable, env_args: dict, n_workers: int)

	

	
__len__() → int

	The number of workers handled by this
instance

	
_broadcast_msg(msg)

	Broadcast the message to all workers

	Parameters

	msg –

	
_send_msg(msg: Any, rank: int)

	Send the message to the process with the
given rank

	Parameters

	
	msg (The message to send) –

	rank (The rank of the proces to send the message) –

	
make(agent: Agent)

	Create the workers

	
work(rank, env_builder: Callable, env_args: dict, agent: Agent, pipe_end) → None

	The worker function

	Parameters

	
	rank (The rank of the worker) –

	env_builder (The callable that builds the worker environment) –

	env_args (The callable arguments) –

	worker_end –

	Return type

	None

replay_buffer

	
class replay_buffer.ReplayBuffer(buffer_size: int)

	The ReplayBuffer class.
Models a fixed size replay buffer.
The buffer is represented by using a deque from Python’s built-in collections library.
This is basically a list that we can set a maximum size. If we try to add a new element whilst the list
is already full, it will remove the first item in the list and add the new item to the end of the list.
Hence new experiences replace the oldest experiences.
The experiences themselves are tuples of (state1, reward, action, state2, done) that we append to the replay deque
and they are represented via the named tuple ExperienceTuple

	
__getitem__(name_attr: str) → List

	Return the full batch of the name_attr attribute

	Parameters

	
	name_attr (The name of the attribute to collect the) –

	values (batch) –

	Return type

	A list

	
__init__(buffer_size: int)

	Constructor

	Parameters

	buffer_size (The maximum capacity of the buffer) –

	
__len__() → int

	Return the current size of the internal memory.

	
add(state: Any, action: Any, reward: Any, next_state: Any, done: Any, info: dict = {}) → None

	Add a new experience tuple in the buffer

	Parameters

	
	state (The current state) –

	action (The action taken) –

	reward (The reward observed) –

	next_state (The next state observed) –

	done (Whether the episode is done) –

	info (Any other info needed) –

	Return type

	None

	
get_item_as_torch_tensor(name_attr: str) → Tensor

	Returns a torch.Tensor representation of the
the named item

	Parameters

	name_attr (The name of the attribute) –

	Return type

	An instance of torch.Tensor

	
reinitialize() → None

	Reinitialize the internal buffer

	Return type

	None

	
sample(batch_size: int) → List[ExperienceTuple]

	Randomly sample a batch of experiences from memory.

	Parameters

	batch_size (The batch size we want to sample) –

	Return type

	A list of ExperienceTuple

trainer

Module trainer. Specifies a utility class
for training serial reinforcement learning algorithms

	
class trainer.TrainerConfig(n_episodes: int = 1, output_msg_frequency: int = - 1)

	

	
class trainer.Trainer(env: Env, agent: Agent, configuration: TrainerConfig)

	
	
__init__(env: Env, agent: Agent, configuration: TrainerConfig) → None

	Constructor. Initialize a trainer by passing the training environment
instance the agen to train and configuration dictionary

	Parameters

	
	env (The environment to train the agent) –

	agent (The agent to train) –

	configuration (Configuration parameters for the trainer) –

	
actions_after_episode_ends(env: Env, episode_idx: int, **options) → None

	Any actions after the training episode ends

	Parameters

	
	env (The environment to train on) –

	episode_idx (The training episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
actions_before_episode_begins(env: Env, episode_idx: int, **options) → None

	Perform any actions necessary before the training begins

	Parameters

	
	env (The environment to train on) –

	episode_idx (The training episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
actions_before_training() → None

	Any actions to perform before training begins

	Return type

	None

	
avg_distortion() → array

	Returns the average reward per episode
:return:

	
avg_rewards() → array

	Returns the average reward per episode
:return:

	
train() → None

	Train the agent on the given environment

	Return type

	None

pytorch_trainer

Module pytorch_multi_process_trainer. Specifies a trainer
for PyTorch-based models.

	
pytorch_trainer.worker(worker_idx: int, worker_model: Module, params: dir)

	Executes the process work

	Parameters

	
	worker_idx (The id of the worker) –

	worker_model (The model the worker is using) –

	params (Parameters needed) –

	
class pytorch_trainer.PyTorchTrainerConfig(n_procs: int = 1, n_episodes: int = 100)

	Configuration for PyTorchMultiProcessTrainer

	
class pytorch_trainer.PyTorchTrainer(env: Env, agent: Agent, config: PyTorchTrainerConfig)

	The class PyTorchMultiProcessTrainer. Trainer
for multiprocessing with PyTorch

	
__init__(env: Env, agent: Agent, config: PyTorchTrainerConfig) → None

	Constructor. Initialize a trainer by passing the training environment
instance the agent to train and configuration dictionary

	Parameters

	
	agent (The agent to train) –

	config (Configuration parameters for the trainer) –

	
actions_after_episode_ends(env: Env, episode_idx: int, **options) → None

	Any actions after the training episode ends

	Parameters

	
	env (The environment to train on) –

	episode_idx (The training episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
actions_before_episode_begins(env: Env, episode_idx: int, **options) → None

	Perform any actions necessary before the training begins

	Parameters

	
	env (The environment to train on) –

	episode_idx (The training episode index) –

	options (Any options passed by the client code) –

	Return type

	None

	
actions_before_training() → None

	Any actions to perform before training begins

	Return type

	None

	
avg_distortion() → array

	Returns the average reward per episode
:return:

	
avg_rewards() → array

	Returns the average reward per episode
:return:

replay_buffer

	
class replay_buffer.ReplayBuffer(buffer_size: int)

	The ReplayBuffer class.
Models a fixed size replay buffer.
The buffer is represented by using a deque from Python’s built-in collections library.
This is basically a list that we can set a maximum size. If we try to add a new element whilst the list
is already full, it will remove the first item in the list and add the new item to the end of the list.
Hence new experiences replace the oldest experiences.
The experiences themselves are tuples of (state1, reward, action, state2, done) that we append to the replay deque
and they are represented via the named tuple ExperienceTuple

	
__getitem__(name_attr: str) → List

	Return the full batch of the name_attr attribute

	Parameters

	
	name_attr (The name of the attribute to collect the) –

	values (batch) –

	Return type

	A list

	
__init__(buffer_size: int)

	Constructor

	Parameters

	buffer_size (The maximum capacity of the buffer) –

	
__len__() → int

	Return the current size of the internal memory.

	
add(state: Any, action: Any, reward: Any, next_state: Any, done: Any, info: dict = {}) → None

	Add a new experience tuple in the buffer

	Parameters

	
	state (The current state) –

	action (The action taken) –

	reward (The reward observed) –

	next_state (The next state observed) –

	done (Whether the episode is done) –

	info (Any other info needed) –

	Return type

	None

	
get_item_as_torch_tensor(name_attr: str) → Tensor

	Returns a torch.Tensor representation of the
the named item

	Parameters

	name_attr (The name of the attribute) –

	Return type

	An instance of torch.Tensor

	
reinitialize() → None

	Reinitialize the internal buffer

	Return type

	None

	
sample(batch_size: int) → List[ExperienceTuple]

	Randomly sample a batch of experiences from memory.

	Parameters

	batch_size (The batch size we want to sample) –

	Return type

	A list of ExperienceTuple

iteration_control

module iteration_control. Utility to control iteration

	
class iteration_control.IterationControl(n_itrs: int, min_dist: float, max_dist: float)

	Helper class to control iteration

	
__init__(n_itrs: int, min_dist: float, max_dist: float) → None

	

function_wraps

	
function_wraps.time_func(fn: Callable)

	
	Execute the given callable and time the time
	it took to execute

	Parameters

	fn (Callable to execute) –

episode_info

Module episode_info. Specifies the dataclass
EpisodeInfo that is used as the return item of on_episode() agent
function to wrap episode results. This is a helper class
to wrap the output after an episode has finished

	
class episode_info.EpisodeInfo(episode_itrs: int = 0, episode_score: float = 0.0, total_distortion: float = 0.0, total_execution_time: float = 0.0, info: dict = <factory>)

	

mixins

module mixins.
Various mixin classes to use for simplifying code

	
class mixins.WithHierarchyTable

	
	
__init__() → None

	

	
add_hierarchy(key: str, hierarchy: Hierarchy) → None

	Add a hierarchy for the given key
:param key: The key to attach the Hierarchy
:param hierarchy: The hierarchy to attach
:return: None

	
finished() → bool

	Returns true if the action has exhausted all its
transforms
:return:

	
reset_iterators()

	Reinitialize the iterators in the table
:return:

	
class mixins.WithQTableMixinBase(table: Optional[QTable] = None)

	Base class to impose the concept of Q-table

	
__init__(table: Optional[QTable] = None)

	

	
class mixins.WithQTableMixin(table: Optional[QTable] = None)

	Helper class to associate a q_table with an algorithm

	
__init__(table: Optional[QTable] = None)

	Constructor

	Parameters

	table (The Q-table representing the Q-function) –

	
class mixins.WithMaxActionMixin(table: Optional[QTable] = None)

	The class WithMaxActionMixin.

	
__init__(table: Optional[QTable] = None)

	Constructor

	Parameters

	table (The Q-table representing the Q-function) –

	
max_action(state: Any, n_actions: int) → int

	Return the action index that presents the maximum
value at the given state
:param state: state index
:param n_actions: Total number of actions allowed
:return: The action that corresponds to the maximum value

	
class mixins.WithEstimatorMixin

	

reward_manager

module reward_manager specifies a class that handles
the rewards awarded by the environment.

	
class reward_manager.RewardManager(bounds: tuple, out_of_max_bound_reward: float, out_of_min_bound_reward: float, in_bounds_reward: float, punish_factor: float, min_distortions: Any, max_distortions: Any)

	The RewardManager class

	
__init__(bounds: tuple, out_of_max_bound_reward: float, out_of_min_bound_reward: float, in_bounds_reward: float, punish_factor: float, min_distortions: Any, max_distortions: Any) → None

	

	
get_reward_for_state(total_distortion: float, current_state: State, next_state: State, min_dist_bins: Any, **options) → float

	Returns a user specified reward signal depending on the
state and the options given

	Parameters

	
	state –

	options –

serial_hierarchy

module serial_hierarchy. A SerialHierarchy represents a hierarchy of transformations
that are applied one after the other

	
class serial_hierarchy.SerialHierarchy(values: dict)

	A SerialHierarchy represents a hierarchy of transformations
that are applied one after the other. Applications should explicitly
provide the list of the ensuing transformations. For example assume that the
data field has the value ‘foo’ then values

the following list [‘fo*’, ‘f**’, ‘***’]

	
__getitem__(item)

	Returns the item-th item
:param item:
:return:

	
__init__(values: dict) → None

	Constructor. Initialize the hierarchy by passing the
list of the ensuing transformations.
:param values:

	
__len__()

	Returns the size of the hierarchy
:return:

	
__setitem__(key, value)

	Set the key-th item to the given value.
If the key-th item has already been set it overrides
the existing value
:param key:
:param value:
:return:

 Python Module Index

 a |
 c |
 d |
 e |
 f |
 i |
 l |
 m |
 n |
 o |
 p |
 q |
 r |
 s |
 t

 		 	

 		
 a	

 	
 	
 a2c	

 	
 	
 a2c_networks	

 	
 	
 action_space	

 	
 	
 actions	

 		 	

 		
 c	

 	
 	
 column_type	

 		 	

 		
 d	

 	
 	
 discrete_state_environment	

 		 	

 		
 e	

 	
 	
 episode_info	

 	
 	
 epsilon_greedy_policy	

 	
 	
 epsilon_greedy_q_estimator	

 	
 	
 exceptions	

 		 	

 		
 f	

 	
 	
 function_wraps	

 		 	

 		
 i	

 	
 	
 iteration_control	

 		 	

 		
 l	

 	
 	
 loss_functions	

 		 	

 		
 m	

 	
 	
 mixins	

 	
 	
 multiprocess_env	

 		 	

 		
 n	

 	
 	
 numeric_distance_type	

 		 	

 		
 o	

 	
 	
 optimizer_type	

 		 	

 		
 p	

 	
 	
 processes_manager	

 	
 	
 pytorch_optimizer_builder	

 	
 	
 pytorch_optimizer_config	

 	
 	
 pytorch_trainer	

 		 	

 		
 q	

 	
 	
 q_learning	

 		 	

 		
 r	

 	
 	
 replay_buffer	

 	
 	
 reward_manager	

 		 	

 		
 s	

 	
 	
 semi_gradient_sarsa	

 	
 	
 serial_hierarchy	

 	
 	
 state	

 		 	

 		
 t	

 	
 	
 time_step	

 	
 	
 trainer	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

_

 	
 	__call__() (epsilon_greedy_policy.EpsilonGreedyPolicy method)

 	__contains__() (state.State method)

 	__getitem__() (replay_buffer.ReplayBuffer method)

 	(serial_hierarchy.SerialHierarchy method)

 	(state.State method)

 	__init__() (a2c.A2C method)

 	(a2c_networks.A2CNetSimpleLinear method)

 	(actions.ActionBase method)

 	(actions.ActionIdentity method)

 	(actions.ActionNumericBinGeneralize method)

 	(actions.ActionNumericStepGeneralize method)

 	(actions.ActionRestore method)

 	(actions.ActionStringGeneralize method)

 	(actions.ActionSuppress method)

 	(actions.ActionTransform method)

 	(epsilon_greedy_policy.EpsilonGreedyPolicy method)

 	(epsilon_greedy_q_estimator.EpsilonGreedyQEstimator method)

 	(exceptions.Error method)

 	(exceptions.IncompatibleVectorSizesException method)

 	(exceptions.InvalidDataTypeException method)

 	(exceptions.InvalidFileFormat method)

 	(exceptions.InvalidParamValue method)

 	(exceptions.InvalidSchemaException method)

 	(exceptions.InvalidStateException method)

 	(iteration_control.IterationControl method)

 	(mixins.WithHierarchyTable method)

 	(mixins.WithMaxActionMixin method)

 	(mixins.WithQTableMixin method)

 	(mixins.WithQTableMixinBase method)

 	(multiprocess_env.MultiprocessEnv method)

 	(processes_manager.TorchProcsHandler method)

 	(pytorch_trainer.PyTorchTrainer method)

 	(q_learning.QLearning method)

 	(replay_buffer.ReplayBuffer method)

 	(reward_manager.RewardManager method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	(serial_hierarchy.SerialHierarchy method)

 	(state.State method)

 	(state.StateIterator method)

 	(trainer.Trainer method)

 	
 	__len__() (multiprocess_env.MultiprocessEnv method)

 	(processes_manager.TorchProcsHandler method)

 	(replay_buffer.ReplayBuffer method)

 	(serial_hierarchy.SerialHierarchy method)

 	(state.StateIterator method)

 	__setitem__() (serial_hierarchy.SerialHierarchy method)

 	__str__() (epsilon_greedy_policy.EpsilonGreedyPolicy method)

 	(exceptions.Error method)

 	(exceptions.IncompatibleVectorSizesException method)

 	(exceptions.InvalidDataTypeException method)

 	(exceptions.InvalidFileFormat method)

 	(exceptions.InvalidParamValue method)

 	(exceptions.InvalidSchemaException method)

 	(exceptions.InvalidStateException method)

 	_ActResult (class in a2c)

 	_broadcast_msg() (multiprocess_env.MultiprocessEnv method)

 	_do_train() (a2c.A2C method)

 	(q_learning.QLearning method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	_init() (semi_gradient_sarsa.SemiGradSARSA method)

 	_send_msg() (multiprocess_env.MultiprocessEnv method)

 	_update_q_table() (q_learning.QLearning method)

 	_validate() (semi_gradient_sarsa.SemiGradSARSA method)

 	_weights_update() (semi_gradient_sarsa.SemiGradSARSA method)

 	_weights_update_episode_done() (semi_gradient_sarsa.SemiGradSARSA method)

A

 	
 	
 a2c

 	module

 	A2C (class in a2c)

 	
 a2c_networks

 	module

 	A2CConfig (class in a2c)

 	A2CNetSimpleLinear (class in a2c_networks)

 	act() (actions.ActionBase method)

 	(actions.ActionIdentity method)

 	(actions.ActionNumericBinGeneralize method)

 	(actions.ActionNumericStepGeneralize method)

 	(actions.ActionRestore method)

 	(actions.ActionStringGeneralize method)

 	(actions.ActionSuppress method)

 	(actions.ActionTransform method)

 	
 action_space

 	module

 	ActionBase (class in actions)

 	ActionIdentity (class in actions)

 	ActionNumericBinGeneralize (class in actions)

 	ActionNumericStepGeneralize (class in actions)

 	ActionRestore (class in actions)

 	
 actions

 	module

 	
 	actions_after_episode() (epsilon_greedy_policy.EpsilonGreedyPolicy method)

 	actions_after_episode_ends() (pytorch_trainer.PyTorchTrainer method)

 	(q_learning.QLearning method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	(trainer.Trainer method)

 	actions_before_episode_begins() (pytorch_trainer.PyTorchTrainer method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	(trainer.Trainer method)

 	actions_before_training() (pytorch_trainer.PyTorchTrainer method)

 	(q_learning.QLearning method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	(trainer.Trainer method)

 	ActionSpace (class in action_space)

 	ActionStringGeneralize (class in actions)

 	ActionSuppress (class in actions)

 	ActionTransform (class in actions)

 	ActionType (class in actions)

 	add() (actions.ActionStringGeneralize method)

 	(replay_buffer.ReplayBuffer method)

 	add_hierarchy() (mixins.WithHierarchyTable method)

 	at (state.StateIterator property)

 	avg_distortion() (pytorch_trainer.PyTorchTrainer method)

 	(trainer.Trainer method)

 	avg_rewards() (pytorch_trainer.PyTorchTrainer method)

 	(trainer.Trainer method)

C

 	
 	calculate_discounted_returns() (in module a2c)

 	
 column_type

 	module

 	
 	ColumnType (class in column_type)

 	copy_time_step() (in module time_step)

 	create_discounts_array() (in module a2c)

D

 	
 	
 discrete_state_environment

 	module

E

 	
 	
 episode_info

 	module

 	EpisodeInfo (class in episode_info)

 	
 epsilon_greedy_policy

 	module

 	
 epsilon_greedy_q_estimator

 	module

 	
 	EpsilonDecayOption (class in epsilon_greedy_policy)

 	EpsilonGreedyConfig (class in epsilon_greedy_policy)

 	EpsilonGreedyPolicy (class in epsilon_greedy_policy)

 	EpsilonGreedyQEstimator (class in epsilon_greedy_q_estimator)

 	EpsilonGreedyQEstimatorConfig (class in epsilon_greedy_q_estimator)

 	Error (class in exceptions)

 	
 exceptions

 	module

F

 	
 	finished (state.StateIterator property)

 	finished() (mixins.WithHierarchyTable method)

 	forward() (a2c_networks.A2CNetSimpleLinear method)

 	
 	from_config() (epsilon_greedy_policy.EpsilonGreedyPolicy class method)

 	from_path() (a2c.A2C class method)

 	
 function_wraps

 	module

G

 	
 	get_item_as_torch_tensor() (replay_buffer.ReplayBuffer method)

 	
 	get_reward_for_state() (reward_manager.RewardManager method)

I

 	
 	IncompatibleVectorSizesException (class in exceptions)

 	initialize() (epsilon_greedy_q_estimator.EpsilonGreedyQEstimator method)

 	InvalidDataTypeException (class in exceptions)

 	InvalidFileFormat (class in exceptions)

 	InvalidParamValue (class in exceptions)

 	
 	InvalidSchemaException (class in exceptions)

 	InvalidStateException (class in exceptions)

 	
 iteration_control

 	module

 	IterationControl (class in iteration_control)

L

 	
 	
 loss_functions

 	module

M

 	
 	make() (multiprocess_env.MultiprocessEnv method)

 	max_action() (mixins.WithMaxActionMixin method)

 	
 mixins

 	module

 	
 module

 	a2c

 	a2c_networks

 	action_space

 	actions

 	column_type

 	discrete_state_environment

 	episode_info

 	epsilon_greedy_policy

 	epsilon_greedy_q_estimator

 	exceptions

 	function_wraps

 	iteration_control

 	loss_functions

 	mixins

 	multiprocess_env

 	numeric_distance_type

 	optimizer_type

 	processes_manager

 	pytorch_optimizer_builder

 	pytorch_optimizer_config

 	pytorch_trainer

 	q_learning

 	replay_buffer

 	reward_manager

 	semi_gradient_sarsa

 	serial_hierarchy

 	state

 	time_step

 	trainer

 	
 	mse() (in module loss_functions)

 	
 multiprocess_env

 	module

 	MultiprocessEnv (class in multiprocess_env)

N

 	
 	
 numeric_distance_type

 	module

 	
 	NumericDistanceType (class in numeric_distance_type)

O

 	
 	on_episode() (a2c.A2C method)

 	(q_learning.QLearning method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	on_state() (epsilon_greedy_policy.EpsilonGreedyPolicy method)

 	(epsilon_greedy_q_estimator.EpsilonGreedyQEstimator method)

 	
 	
 optimizer_type

 	module

 	OptimizerType (class in optimizer_type)

P

 	
 	parameters() (a2c.A2C method)

 	play() (q_learning.QLearning method)

 	(semi_gradient_sarsa.SemiGradSARSA method)

 	
 processes_manager

 	module

 	
 pytorch_optimizer_builder

 	module

 	
 	pytorch_optimizer_builder() (in module pytorch_optimizer_builder)

 	
 pytorch_optimizer_config

 	module

 	
 pytorch_trainer

 	module

 	PyTorchOptimizerConfig (class in pytorch_optimizer_config)

 	PyTorchTrainer (class in pytorch_trainer)

 	PyTorchTrainerConfig (class in pytorch_trainer)

Q

 	
 	q_hat_value() (epsilon_greedy_q_estimator.EpsilonGreedyQEstimator method)

 	
 q_learning

 	module

 	
 	QLearnConfig (class in q_learning)

 	QLearning (class in q_learning)

R

 	
 	reinitialize() (replay_buffer.ReplayBuffer method)

 	
 replay_buffer

 	module

 	ReplayBuffer (class in replay_buffer)

 	
 	reset_iterators() (mixins.WithHierarchyTable method)

 	
 reward_manager

 	module

 	RewardManager (class in reward_manager)

S

 	
 	sample() (replay_buffer.ReplayBuffer method)

 	
 semi_gradient_sarsa

 	module

 	SemiGradSARSA (class in semi_gradient_sarsa)

 	SemiGradSARSAConfig (class in semi_gradient_sarsa)

 	
 serial_hierarchy

 	module

 	
 	SerialHierarchy (class in serial_hierarchy)

 	
 state

 	module

 	State (class in state)

 	StateIterator (class in state)

 	StepType (class in time_step)

T

 	
 	time_func() (in module function_wraps)

 	
 time_step

 	module

 	TimeStep (class in time_step)

 	TorchProcsHandler (class in processes_manager)

 	
 	train() (trainer.Trainer method)

 	
 trainer

 	module

 	Trainer (class in trainer)

 	TrainerConfig (class in trainer)

W

 	
 	WithEstimatorMixin (class in mixins)

 	WithHierarchyTable (class in mixins)

 	WithMaxActionMixin (class in mixins)

 	
 	WithQTableMixin (class in mixins)

 	WithQTableMixinBase (class in mixins)

 	work() (multiprocess_env.MultiprocessEnv method)

 	worker() (in module pytorch_trainer)

 _images/qlearn_distortion_3_cols.png
035

030

025

Distortion
°
N
S

015

0.10

Running distortion average over 100 episodes

200

400

Episodes

600

800

1000

_images/qlearn_distortion_multi_cols.png
Distortion

0.80

075

0.70

0.65

0.60

055

Running distortion average over 100 episodes

=—

200

400 600
Episodes

800

1000

_images/general_concept.png
«Agent receives reward R

- .
Environment

s
i
I
I
I
I
I
I
y

RL Agent,

Dataset

«Agent selects an action A»

Action Space
~ Generalization

- Global recoding a
- Suppression

_images/q_learning.png
Q-learning (off-policy TD control) for estimating 7 ~ m,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s, a), for all s € 8, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R+ymax, Q(S",a) — Q(S, 4)]
S5

until S is terminal

_images/sarsa_semi_grad_multi_cols_distortion.png
Distortion

Running distortion average over 100 episodes

075

0.70

0.65

0.60

055

Mo,
W

WJ\WWMW
wim Y

200

400

Episodes

600 800

1000

_images/sarsa_semi_grad_multi_cols_rewards.png
20

Reward

10

Running reward average over 100 episodes

M

200

M N g

VWA

400

Episodes

600

800

1000

_images/qlearn_rewards_3_cols.png
Reward

60

20

140

120

Running reward average over 100 episodes

100

80

200

400

600
Episodes

800

1000

_images/qlearn_rewards_all_cols.png
140

120

100

Running reward average over 100 episodes

80

Reward

60

20

200

400

600
Episodes

800

1000

_images/semi_gradient_sarsa.png
Episodic Semi-gradient Sarsa for Estimating § ~ ¢.

Input: a differentiable action-value function parameterization G : 8§ x A x R - R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A < initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w4 w+a[R— (S, A w)|Vq(S, A w)
Go to next episode
Choose A’ as a function of §(S’,-,w) (e.g., e-greedy)
w4 w+a[R+74(S, A, w) — 4(S, A, w) | V(S, A, w)
S+ S
A A

_images/tiling_example.png
Tiling 1 —

Tiling 2 ?_ -cFE-H =

Tiling 3 ! : . ! !

. iling D L L
Continuous Tiling 4 L T ! Four active
2D state ! tiles/features

. _: | — overlap the point
space T and are used to

Point in == d represent it

state space | T . ! .

to be [I A DRI DA B

represented

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 RL Anonymity (with Python)

 		
 Conceptual overview

 		
 Installation

 		
 Run tests

 		
 Generate documentation

 		
 Examples

 		
 Q-learning on a three columns dataset

 		
 Overview

 		
 Q-learning

 		
 Code

 		
 Results

 		
 References

 		
 Q-learning algorithm on mock data set

 		
 Overview

 		
 Code

 		
 Results

 		
 References

 		
 Semi-gradient SARSA algorithm on mock data set

 		
 Overview

 		
 Semi-gradient SARSA algorithm

 		
 Tile coding

 		
 Code

 		
 References

 		
 A2C algorithm on mock data set

 		
 Overview

 		
 A2C algorithm

 		
 Estimate A(s_t, a_t)

 		
 GAE

 		
 A2C model

 		
 Code

 		
 Results

 		
 References

 		
 API

 		
 epsilon_greedy_q_estimator

 		
 a2c

 		
 q_learning

 		
 semi_gradient_sarsa

 		
 column_type

 		
 datasets_loaders

 		
 dataset_wrapper

 		
 exceptions

 		
 optimizer_type

 		
 pytorch_optimizer_builder

 		
 loss_functions

 		
 distortion_calculator

 		
 numeric_distance_type

 		
 numeric_distance_calculator

 		
 pytorch_optimizer_config

 		
 string_distance_calculator

 		
 a2c_networks

 		
 processes_manager

 		
 epsilon_greedy_policy

 		
 preprocess_utils

 		
 actions

 		
 action_space

 		
 state

 		
 discrete_state_environment

 		
 tiled_environment

 		
 time_step

 		
 multiprocess_env

 		
 replay_buffer

 		
 trainer

 		
 pytorch_trainer

 		
 replay_buffer

 		
 iteration_control

 		
 function_wraps

 		
 episode_info

 		
 mixins

 		
 reward_manager

 		
 serial_hierarchy

_static/file.png

_images/agent_environment_interface.png
reward

_images/a2c_multi_cols_multi_state_distortion.png
IS

ssssssss

_images/a2c_multi_cols_multi_state_rewards.png
800

Running reward average over 100 episodes

600

e

Reward

200

A\
WWV

200

400

Episodes

600

800

1000

